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Short-term memory is often correlated with persistent changes in
neuronal firing rates in response to transient inputs. We model the
persistent maintenance of an analog eye position signal by an oculo-
motor neural integrator receiving transient eye movement
commands. Previous models of this network rely on precisely tuned
positive feedback with <1% tolerance to mistuning, or use neurons
that exhibit large discontinuities in firing rate with small changes in
eye position. We show analytically how using neurons with multiple
bistable dendritic compartments can enhance the robustness of eye
fixations to mistuning while reproducing the approximately linear
and continuous relationship between neuronal firing rates and eye
position, and the dependence of neuron pair firing rate relationships
on the direction of the previous saccade. The response of the model
to continuously varying inputs makes testable predictions for the
performance of the vestibuloocular reflex. Our results suggest that
dendritic bistability could stabilize the persistent neural activity
observed in working memory systems.

Introduction
The oculomotor neural integrator is a brain stem region that
converts velocity-encoded eye movement commands into
signals that encode eye position. The velocity commands
include bursting inputs that cause saccades and head-velocity
inputs that drive the vestibuloocular reflex (VOR). In the
absence of command inputs, integrator neurons maintain
persistent firing at a rate that is proportional to eye position.
Thus, integrator neurons are said to maintain a ‘memory’ of eye
position.

The first model of a neural integrator (Rosen, 1972) consists of
a network of neurons with extremely strong self-excitation and
weaker global recurrent excitation. The strong self-excitation
makes the individual neurons bistable as a function of their
external inputs, with both a quiescent (‘off’) state and a self-
sustaining (‘on’) state of firing at saturation. The neurons have
staggered thresholds for turning ‘on’ or ‘off’. The network
response is characterized by the number of ‘on’ units. In the
absence of the global excitatory coupling, an external input flips
‘on’ all units that have a threshold lower than this input.
Repeated presentations of this input do not cause additional
units to flip ‘on’. With recurrent excitatory coupling, repeated
presentations of the input flip ‘on’ additional units that are
brought closer to their firing threshold by the previous input’s
effect on the network activity. This behavior was shown to
result in temporal integration.

Rosen’s model was dismissed (Cannon et al., 1983) as a model
of the oculomotor neural integrator because real oculomotor
neurons do not exhibit binary ‘on/off’ behavior. Subsequent
models (Kamath and Keller, 1976; Cannon and Robinson, 1985;
Seung, 1996; Seung et al., 2000) substituted neurons with
continuous firing rate versus injected current relationships for

Rosen’s bistable neurons. They also generalized Rosen’s recur-
rent excitatory network architecture to other architectures that
lead to effective positive feedback between neurons, like recip-
rocal inhibition (Cannon et al., 1983; Cannon and Robinson,
1985). These models successfully capture the threshold linear
firing rate versus eye position relationships (Robinson, 1981;
Aksay et al., 2000) observed for oculomotor neurons and
provide an explanation for why these relationships exhibit
different slopes and thresholds (Seung et al., 2000). However,
they rely on fine-tuning of the network positive feedback to
within a tolerance of <1% to achieve stable eye fixations. Too
much feedback causes the network firing rates to grow to
saturation, while too little causes firing rates to decay to zero.

Recently, Koulakov et al. (2002) showed how a network of
coupled bistable units similar to Rosen’s model, but more real-
istic because the neurons exhibit a graded component in their
firing response, could add robustness to eye fixations without
requiring fine-tuning of parameters. In addition, these authors
used conductance-based neurons and demonstrated how the
bistability could be achieved by the voltage-dependent proper-
ties of the NMDA channel. This followed upon previous work
that showed how bistability could make working memory
network models more robust by providing the neurons with an
intrinsic source of stability (Camperi and Wang, 1998; Lisman et
al., 1998).

Neuronal firing rates in the model of Koulakov et al. (2002), as
in Rosen’s model, can exhibit large discontinuous jumps in
steady-state firing rate with small smooth changes in eye posi-
tion. These discontinuities reflect the neuronal bistability, with
greater discontinuity tending to give greater robustness. Experi-
mentally, large jumps in firing rate have not been observed to
persist when current pulses have been injected at a variety of
eye positions (Aksay et al., 2001). Additionally, firing rates have
not been observed to exhibit systematic jumps in firing rate with
continuously varying command inputs as during the VOR
(Pastor et al., 1994).

Here, we propose a neural integrator model that attains
robustness to mistuning from bistability but without large
discontinuities in firing rate. This is achieved by placing the
bistability in local dendritic compartments that are well isolated
from the influence of the soma. Dendritic bistability has been
observed experimentally in other systems under various condi-
tions (Hounsgaard and Kiehn, 1993; Reuveni et al., 1993; Yuste
et al., 1994; Lee and Heckman, 1998a,b; Schiller et al., 2000). It
has been attributed to voltage-dependent elements that can
exhibit self-sustained activation, such as the NMDA channel and
voltage-sensitive Ca2+ channels. Integrator neurons display
extensive dendritic arborization (Aksay et al., 2000), and theor-
etical work in other systems (Koch et al., 1982; Poirazi et al.,
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2003a,b) suggests that neurons can contain many approximately
independent dendritic subunits.

The model’s firing rate exhibits quasi-continuous behavior,
defined in the limit of a large number of dendritic compartments
as having discontinuities in firing rate versus eye position rela-
tionships that approach zero as the number of these compart-
ments approaches infinity. Qualitatively, this means that any
jumps in firing rate are sufficiently small as to be undetectable
experimentally. This results from the firing rate of the neuron
jumping only incrementally when a single dendritic compart-
ment flips ‘on’. Thus, this model achieves robust eye fixations
without requiring fine-tuning of parameters or large discontinu-
ities in firing rates.

Model Description
We construct a network of N recurrently connected neurons
that controls the eye position in the positive half of its range.
Each neuron has N bistable dendritic compartments, each of
which receives recurrent input from one of the N neurons in the
network (Fig. 1A). Each soma receives recurrent network input
from the N dendrites, as well as direct (not mediated by the
dendrites) constant-rate tonic input, saccadic burst input, and
head velocity command input responsible for the VOR. We use
a firing rate model of the soma and assume that the firing rate ri

of the ith neuron is given by a threshold linear sum of its inputs
(Aksay et al., 2001):

(1)

where []+ denotes that all negative values are set to zero. Here,
rton,i gives the contribution to the firing rate due to tonic back-

ground input, rcom,i gives the contribution due to eye movement
commands (saccadic bursts and vestibular inputs), Wij gives the
maximum possible contribution from presynaptic neuron j, and
Dij(rj) gives the time-dependent activation of the dendrite that
receives input from neuron j.

Recurrent input in the network is mediated by bistable
dendritic compartments. The dendritic activation Dij(rj) is
governed by exponential approach of time constant τdend to a
hysteretic steady-state activation relation hij(rj) (Fig. 1B). hij(rj) is
like a function except that it is binary valued and history-
dependent for presynaptic rates roff,ij < rj < ron,ij: When rj

exceeds an activation threshold ron,ij, hij(rj) jumps up to a value
of 1 (turns ‘on’). hij(rj) then remains at a value of 1 until rj drops
below a deactivation threshold roff,ij and jumps down to a value
of 0 (turns ‘off’). The Dij(rj) dynamics may be summarized by the
first order differential equation:

(2)

Here, τdend sets the intrinsic biophysical timescale in the model.
The simplified model of dendritic activation assumed by the
above equation allows the main results of this paper to be
derived analytically. Later in the paper, we consider more
complicated but less analytically tractable variants of this model
that include non-instantaneous synaptic input to the dendrite
and background noise.

Results

Firing Rates during Fixations Are Threshold Linearly 
Related to Each Other and to Eye Position
We next show that the model outlined above can exhibit quasi-
continuous, linear firing rate versus eye position relationships
during fixations. This occurs when the recurrent input to each
neuron has the form described below. Later, we show how
modifying the form of the model described below can lead to
experimentally observed effects such as history-dependence of
the firing rate versus firing rate relationships of neuron pairs.

We suppose that the dendritic-activation thresholds, ron,ij and
roff,ij, depend only on the presynaptic neuron from which the
dendrite receives input, ron,ij = ron,j and roff,ij = roff,j. From this, it
follows that Dij(rj) = Dj(rj). We suppose further that the neuron-
dendrite coupling strengths Wij can be written in the outer
product form Wij = ζiηj (Seung et al., 2000). These assumptions
are made for computational convenience and reduce the
network dynamics to a single equation (equation 5, below) that
can be treated analytically. This equation can be thought of as
modeling only the ‘integrating mode’ of a more general multi-
dimensional network with many transiently decaying modes
(Seung, 1996). ηj can be interpreted as the weight of activation
of all dendrites to which neuron j projects, and ζi as the slope of
neuron i’s firing rate versus total dendritic activation relation-
ship. The outer product form of the recurrent feedback contri-
butions implies that each of the N dendrites to which a given
neuron projects has identical dynamics. Thus, the N2 dendrites
in the model function as N identically behaving groups (Fig. 1A).

Under these assumptions, equation 1 can be re-written as

(3)

where

Figure 1. (A) Structure of the connections and inputs to the neurons in the analytic
model network. Two of the N neurons in the network are shown. Neuron j projects to
an identical dendritic compartment on every other neuron, characterized by the
dendritic activation function Dj(rj). The contribution of this dendritic compartment to
postsynaptic neuron i’s firing rate is WijDj(rj). Neuron i’s firing rate also reflects
contributions from tonic input, rton,i, and command input, rcom,i. (B) The hysteretic
steady-state activation relation of a bistable dendrite receiving input from a presynaptic
neuron that fires at rate r.
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(4)

Thus, during fixations (rcom,i = 0), all firing rates are threshold
linearly related to  with slopes ζi and fixed thresholds –rton,i/ζi

(Fig. 2A). We refer to  as the network representation of eye
position. We do not model the readout of .

The linearity of the ri versus  relationships derives from the
successive recruitment of ‘on’ dendrites with increasing eye
position. Figure 2B illustrates the recruitment order of dendrites
that receive input from three different neurons and have the
same activation weights ηi. In the limit of very many inde-
pendent dendritic compartments, the ri versus  relationships
become not only linear, but also quasi-continuous.

Graphical Analysis of Fixations in a Well-tuned, Leaky or 
Unstable Integrator
Equations 2–4 can be combined to give a single equation
governing the dynamics of . Multiplying equation 2 by ηi,
summing over i, and substituting for ri and , gives

(5)

We have dropped the thresholding in the argument of hi(ri)
because we assume that hi(ri) = 0 when its argument is less than
zero.

Stable eye fixations in the absence of eye movement
commands (rcom,i = 0) may occur at any eye position for which

 

This may be illustrated graphically [compare (Seung et al., 2000;
Koulakov et al., 2002)] by plotting the left and right sides of this
equation as a function of  on the same set of axes (Fig. 3A).
The  term draws out a 45° line. The summed term traces out a
ragged ‘band’ representing the summed contribution of the
dendritic inputs as a function of . The intersections of the 45°
line and band give the possible stable eye positions. For a partic-
ular value of , the dendritic hysteretic rectangles that appear
below the horizontal line y =  represent dendritic compart-
ments that are ‘on’, and those appearing above this line repre-
sent compartments that are ‘off’. In the limit of many dendritic
compartments, the ragged band of stacked rectangles
approaches a smooth band, and the set of eye positions over
which stable fixations can be achieved by a well-tuned inte-
grator becomes quasi-continuous (Fig. 3B). This limit is achieved
by scaling the dendritic weight factors as  to maintain
the total feedback to the neuron as the number of dendrites
increases.

A ‘well-tuned’ integrator in this model does not require ‘fine-
tuning’. Stable fixations can be achieved over a quasi-continuous
range of eye positions so long as the band intersects the 45° line
throughout this range. Perturbations of the network parameters
deform the shape of the band by changing the shapes and/or
locations of the hysteretic dendritic rectangles (see Fig. 2B). As
a result of such perturbations, the band may no longer enclose
the 45° line throughout the full range of eye positions (Fig.
3C,D). For the eye positions at which the band does not enclose
the line, fixations cannot be maintained. Instead, the eyes drift
with a velocity proportional to the distance between the band
and the line at the corresponding value of  (as can be seen
from equation 5). When there is insufficient feedback, the inte-

Ê ηjDj rj( )
j 1=

N

∑=

Ê

Figure 2. (A) Firing rate as a function of  for a neuron with tonic background firing
rate rton,i and with sensitivity to dendritic activation ζi. (B) Contribution to  of the
dendrites to which three neurons project. The weighted steady-state activations ηi hi (ri)
for each of these dendrites (solid, dashed and dotted lines) are plotted as a function of

. The ‘on’ and ‘off ’ thresholds as a function of  are labeled for one dendrite (solid
line).
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Ê

Ê
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Figure 3. Graphical analysis of eye fixations. (A) Decay (gray line) and positive
feedback (black hysteretic loops) contributions to eye velocity (equation 5) during
fixations (rcom,i = 0). Stable fixations can occur at any value for which the decay and
positive feedback relations intersect. (B) In the limit of large N, the hysteretic loops
form a nearly continuous positive feedback ‘band’. The contribution of one dendrite is
highlighted (black rectangle). (C,D) Positive feedback bands for leaky (C) and unstable
(D) integrators. Stable fixations can occur at eye positions up to  for which the
band encloses the line. When the band does not enclose the line,  drifts with a
velocity proportional to the difference between the line and the near side of the band.
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grator becomes ‘leaky’ and stable eye fixations are held only
when  is less than a ‘null’ eye position  (Fig. 3C). For

, the eye position decays to the null position . When
the feedback is too large, the integrator becomes ‘unstable’,
holding stable fixations only for  and growing until
saturation when  exceeds .

Dendritic Hysteresis, Not Binary Dendritic Responses, 
Leads to Robustness of a Quasi-continuous Set of Stable 
Eye Fixations
The tolerance of stable fixations to mistuning of parameters
comes about primarily because of the hysteresis in the functions
hi(ri), rather than their binary (‘on’ or ‘off’) nature (Pouget and
Latham, 2002). We illustrate this for a specific example below.

Consider a network of N neurons with constant parameter
values ron,i = ron, roff,i = roff, and Wij = W = ηζ, and equally spaced
tonic inputs

where  (Fig. 3). These values were chosen to
form a band with parallel edges whose bottom is centered at the
origin. For this model, stable fixations across the entire range of
eye positions can be achieved for values of W within a range ∆W
defined by (see Appendix for derivation):

(6)

where W* gives the midpoint of the range ∆W. ∆W/W* defines
the fractional tolerance of the network to mistuning of the W.

The first term of equation (6) gives the effect of the hysteresis:
the fractional tolerance of the network due to hysteresis equals
the width of each dendrite’s hysteretic loop divided by its
midpoint. Equivalently, this equals the width of the hysteretic
band in the limit  (Fig. 3B) divided by the maximum eye
position. The fact that ∆W/W* remains finite in the continuum
limit means that the network remains robust. This is seen in
Figure 4A,B: when the weights are mistuned by 10% (Fig. 4A), a
network of 100 neurons with hysteretic dendrites still maintains
stable firing across the entire range of  (Fig. 4B).

The effect of having discrete fixed points is given by the
second term of equation (6) and, for large N, decays as 1/N. In
the absence of hysteresis, the positive feedback ‘band’
becomes a jagged ‘line’ that occupies some width due to its
nonlinear shape. For an excitatory network, the feedback line
is a monotonically non-decreasing function. This creates a
tradeoff between the number of discrete eye positions that can
be maintained and the stability of these eye positions (Fig. 4C):
Wider deviations of the feedback line from the 45° decay line
allow greater tolerance to mistuning of parameters that distort
the shape of the feedback line. However, wide deviations from
the 45° line imply further separated, and hence more discrete,
stable eye positions (Fig. 4C, left). Given that stable eye posi-
tions are observed without noticeable digitization, it is unlikely
that discreteness alone is a major source of stability in the oculo-
motor neural integrator.

The tradeoff discussed above implies that, to achieve a quasi-
continuum of potentially stable eye positions without hysteresis,
the feedback band must be nearly perfectly linear and never
deviate far from the 45° line. To make this idea concrete, let us
compare the results obtained above for a hysteretic and binary

h(r) (equation 6; Fig. 4A,B) with the case where h(r) is binary
but not hysteretic. In the latter case, the first term of equation
(6) is zero. Therefore, taking the continuum limit  abol-
ishes the robustness of the model. This is demonstrated in Figure
4C (right) and D for a network with identical parameters to that
of Figure 4A,B except for the removal of the hysteresis. When
the feedback is fine-tuned, the network can maintain stable
firing at N values of  (not shown). However, when the weights
are mistuned by 10%, the non-hysteretic network exhibits rapid
decay in  for nearly all values of  (Fig. 4D). Only at extremely
low values of  does the network maintain stable fixations. This
small amount of remaining stability is due to the jaggedness of
the feedback line. Similar stability due to discreteness has been
observed in previous models (Seung et al., 2000) and is a general
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Figure 4. Hysteresis is the primary contributor to the robustness of stable fixations.
(A) Decay line (gray) and positive feedback band (black) for a network of 100 neurons
with hysteresis and coupling strengths W = ηζ decreased by 10% from W* (equation
15) for a network that tolerates ±10% mistuning. (B) The hysteretic network tolerates
the 10% mistuning, producing stable firing rates over a quasi-continuous range of .
Top, middle, and bottom panels, respectively, show the eye movement command
received by each neuron, , and the firing rate of one neuron in the network as a
function of time. (C) A recurrent excitatory network without hysteresis has a tradeoff
between having a few discrete fixed points that are robust to mistuning (left, stable
fixed points denoted by s) or a quasi-continuum of fixed points that are highly sensitive
to mistuning (right, drawn for a 10% decrease of W from optimal). (D) The non-
hysteretic network with band pictured in C (right) shows severe leak. Panels are as
described in B. In all simulation figures, N = 100,  where the maximum
eye position  = 50°, and the midpoint of the hysteretic rectangles = 35 Hz.
ron and roff are chosen to set the tolerance to mistuning of the network according to
equation 6 (for parallel-edge shaped bands) or equation 7 (for cone-shaped bands).
Because the ηι are constant, uniform changes across the ζι determine the mistunings
of W from W*. for the parallel-edge shaped bands. τdend

= 100 ms in all figures except Figure 6.
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consequence of the nonlinear shape of h(r) rather than the
particular binary form of h(r) used here.

Although we have only discussed uniform changes in W here,
changes in particular weights will change only the shape of
the corresponding hysteretic rectangles (Fig. 2B). The tuning
criterion described in equation (6) is strictest for the Nth
dendrite because tilting the band by uniformly changing W
values will most easily push the top of the band outside the line.
The methods used in the Appendix to determine the tuning can
be applied to changes in particular sets of weights, or random
sets of weights, with the general result that random weight
changes will have less effect than equal-magnitude uniform
weight changes for which tolerances were defined here.

The Shape of the Band Relates to the ri versus  
Relationships and Determines the Network Response to 
Strong Perturbations
In the previous example, we considered the special case of
uniform dendritic parameters and equally spaced tonic inputs.
We next consider the effect of having nonuniform dendritic
parameter values. For simplicity, we here restrict the analysis to
the large N limit and to band shapes that have linear slopes. A
more detailed discussion is provided in the Appendix.

The shape of the positive feedback band is determined by the
sizes and positions of each of the hysteretic rectangles (Fig. 2B).
These sizes and positions as a function of  are given by the
individual terms in the sum of equation (5): the hysteretic
response as a function of presynaptic firing rates, hi(ri), is scaled
vertically by ηi, shifted horizontally by rton,i, and scaled horizon-
tally by . In general, there are many ways to tune a band
through partly redundant variations in the parameters ηi, ζi, ron,i,
roff,i, and rton,i. Throughout this work, we fix ηi at the constant
value . Except for the simulations of history-
dependent effects (Fig. 6), we also hold constant the values of
ron,i = ron and roff,i = roff.

Although many parameters affect the shape of the band,
because ζi and –rton,i/ζi give the slopes and firing rate onset
thresholds of the ri versus  relationships, the shape of the band
is intimately related to these relationships. The band with
parallel edges (Fig. 3A,B; Fig. 5B), or ‘parallel-edge shaped’
band, was constucted from ri versus  relationships having
constant slopes but staggered thresholds that reflect different
levels of tonic background input (Fig. 5A). Experimentally,
neurons differ in both their slopes and thresholds, with a
tendency for higher threshold neurons to have higher slopes
(Aksay et al., 2000). This arrangement can be captured in a
simple model in which the dendritic parameters ron,i = ron, roff,i =
roff, and ηi = η and tonic inputs rton,i = rton are assumed to be
equal, but the ζi are staggered according to (Fig. 5D)

This gives rise to a cone-shaped band (Fig. 5E).
Stable fixations for the cone-shaped band network tolerate

perturbations that do not cause the  line to fall outside the
band. This can be shown to occur over a range ∆W of W’s given
by (Appendix)

(7)

where W* gives the midpoint of the range ∆W. The form of the
tolerance of this network to mistuning is similar to that for the

network with parallel-edge shape band (equation 6), except that
the rates are shifted by rton.

For more severe perturbations, the networks behave much
differently. The network with the parallel-edge shaped band
responds to large decreases in coupling strengths with a rapid
decay in  towards a fixed nonzero null eye position  (Fig.
5C). In contrast, the network with the cone-shaped band decays
towards a zero null position, but with a much slower decay time
(Fig. 5F). Aggregated experimental measurements of ri versus
eye position relationships across many animals appear to fall
somewhere between the two extreme cases shown here (Aksay
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Figure 5. Relationship between firing rate versus  relationships, shape of the band,
and network behavior. (A) Firing rate versus  relationships of five neurons for a
network with constant couplings Wij = ηζ and uniformly spaced rton,i. (B) Shape of the
band for a network with firing rate relationships as depicted in A, and mistuning of
weights by 12% for a band width that tolerates ±10% mistuning. (C) Performance for a
leaky integrator with band shape as in B.  decays rapidly towards a null position 
for > . (D) Firing rate versus  relationships of five neurons for a network with
constant rton,i = rton and staggered slopes  where

. (E) Shape of the band for a network with firing rate relationships
as depicted in D, and mistuning of weights by 12% for a band width that tolerates
±10% mistuning. (F) Performance for a leaky integrator with band shape as in E. 
decays with a longer time constant than in C towards a null position  = 0. For other
parameter values, see caption of Figure 4.
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et al., 2000). This suggests that the real network behavior would
be intermediate between these two cases.

The null point to which  decays and the time constant of
this decay can be generalized to a network with band edges that
are arbitrary linear functions of . From equation (5), it can be
shown that the dynamics of such a network describe exponen-
tial growth towards or leak (decay) away from a null eye posi-
tion

(8)

with a time constant

(9)

where the 1 in the denominator gives the slope of the  line. In
the equations above, the upper side of the band should be used
to calculate  and τnetwork for a leaky integrator, and the
bottom side of the band for an unstable integrator.

The results above have all been computed in the absence of
noise. The presence of noise can cause additional drift and, in a
network in which the band is not perfectly centered around the
decay line, this drift may be biased. Thus, for example, if noise
were included in the simulation of Figure 5C, there would be a
less discontinuous increase in eye drift with increasing eye posi-
tion. Examples of fixations in the presence of noise are given in
the section ‘Network dynamics during the VOR and effects of
noise’.

History Dependence of Firing Rate versus Firing Rate 
Relationships Between Neurons
To a first approximation, the firing rates of oculomotor inte-
grator neurons are threshold linearly related to one another.
However, recent work reported in this issue (Aksay et al., 2003)
shows that the firing rate relationships of neuron pairs are
systematically different following saccades that increase the
recorded neurons’ firing rates (‘ON-direction’ saccades, corres-
ponding to eye movements in a direction ipsilateral to the side
of the recorded neurons) versus those that decrease the
neurons’ firing rates (‘OFF-direction’ saccades). In particular, if
the firing rates of neuron pairs are plotted with the higher firing-
rate threshold neuron as the ordinate and the lower firing-rate
threshold neuron as the abscissa, then the points following ON-
direction saccades will preferentially lie above those following
OFF-direction saccades. That is, the higher firing-rate threshold
neurons have relatively higher firing rates following ON-direc-
tion saccades than following OFF-direction saccades. We refer to
this previous saccade direction-dependent relationship in the
neurons’ firing rate versus firing rates relationships as ‘ON–OFF
hysteresis’.

The integrator model described in the previous sections
(equations 2–4) does not exhibit this behavior because the outer
product form of the model implies that, at all times, the neurons’
firing rates have a fixed relationship relative to one another.
However, if the model is modified so that the outer product
form is broken in an appropriate manner, the model can exhibit
ON–OFF hysteresis.

We choose to break the outer product form of the model by
relaxing the assumption Dij = Dj that the dendritic-activation
thresholds for a particular dendrite depend only on the presyn-
aptic neuron projecting to a given dendrite. We also, for added
realism, include a synapse whose activation decays with a time

constant τs. The inclusion of the synapse does not by itself
produce rate-rate hysteresis, although the value of τs does affect
the relative positions of the ON-direction and OFF-direction sets
of points in the rate–rate plots (see below). The equations
governing the modified model are:

(10)

(11)

(12)

where the steady-state dendritic activation hij(sj) is defined as
previously, except that the dendritic-activation thresholds for
turning ‘on’ and ‘off’ are now defined in terms of synaptic activa-
tions, son,ij and soff,ij, rather than in terms of the presynaptic
neurons’ firing rates, ron,ij and roff,ij. Because this network can no
longer be written in an outer-product form, it cannot be reduced
to a one-dimensional equation as was the case previously (equa-
tion 5).

Figure 6 shows how a network with different dendritic-activa-
tion functions for low firing rate threshold neurons (defined, in
this example, as neurons with large tonic background activities
rton,i) and high firing rate threshold neurons (defined, in this
example, as neurons with small tonic background activities
rton,i) can lead to ON–OFF hysteresis. For a given firing rate of
the low firing rate threshold neuron (Fig. 6A, top), the high
firing-rate threshold neuron (Fig. 6A, bottom) attains a different
firing rate depending on whether the fixation follows an ON-
direction or OFF-direction saccade (Fig. 6A). When the steady-
state firing rate versus firing rate relationships of the two
neurons are plotted, they form two approximately linear sets of
values, with the points following ON-direction saccades lying
above those following OFF-direction saccades (Fig. 6B). This
behavior is a result of arranging the dendritic-activation thresh-
olds son,ij = son,i and soff,ij = soff,i of the different neurons such that
the dendrites on the higher firing-rate threshold neurons both
turn ‘on’ and turn ‘off’ before those on the lower firing-rate
threshold neurons (Fig. 6C, network parameters are given in the
Fig. 6 caption). As a result, when the eyes change direction, the
dendrites on the high firing-rate threshold neuron change their
activation states before the corresponding ones on the low
firing-rate threshold neuron. This implies that the high firing-rate
threshold neuron will change its rate by relatively more than the
low firing-rate threshold neuron immediately following a change
in eye movement direction (Fig. 6A, gray arrows shows one
example).

Figure 6 demonstrates just one possible way of generating
ON–OFF hysteresis. We note that as long as the model does not
have an outer product form, there are many possible parameter
choices that could lead to ON–OFF hysteresis. For example,
we have found that the locations of the ON and OFF points in
Figure 6B depend on the dynamics of the synaptic and dendritic
activations and the form of the saccadic burst as well as the
parameters determining the shape of the hysteretic dendritic
rectangles.

Network Dynamics during the VOR and Effects of Noise
In addition to integrating transient saccadic burst commands,
the goldfish oculomotor neural integrator also receives contin-
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uous eye velocity command inputs involved in the vestibulo-
ocular and optokinetic reflexes (VOR and OKR, respectively).
Here, we consider the integration of eye movement commands
that drive the VOR. The firing rates of vestibular neurons, which
provide the input to the oculomotor neural integrator, primarily
encode head velocity. These velocity signals are then converted
by the neural integrator to eye position signals that are respon-
sible for stabilizing gaze during head movements.

Dendritic bistability lends stability to eye fixations because it
causes the system to be relatively insensitive to small perturba-
tions. This suggests that the network might not be responsive to
small velocity commands. Using sinusoidal head velocity input,
we show that a network in the absence of noise is indeed insen-
sitive to small command inputs but that this insensitivity may be
largely overcome by the presence of noise in the neuron’s firing
rates. When the network is mistuned, the noise causes signifi-
cant drift in the VOR and a lesser drift in fixations. However,
neither of these drifts is as large as would occur in the absence
of hysteresis. Thus, hysteresis in the presence of noise appears
to add robustness to fixations (although not as much robustness
as in a network without noise) and a lesser amount of robustness
to the VOR.

The effect of a nonzero command input rcom,i is to shift the ith

hysteretic rectangle in the previous figures to the left by an
amount rcom,i/ζi. This can be seen from equation (5), in which
rcom,i appears in the argument of the bistable function h. For
sufficiently large rcom,i, the band may no longer intersect the 45°
line at the current value of .  is then driven with a velocity
determined from equation (5) by the difference between the 45°
line and the near side of the band.

The response of the hysteretic network to continuously
varying velocity commands is illustrated in Figure 7. We
consider the network defined by equations (10–12) with a
parallel-edge shaped band (Fig. 7A,B) that tolerates ±10%
mistuning in the absence of noise. Head velocity commands to
each neuron are modeled by identical slowly varying sinusoidal
inputs rcom,i = A sin(2πft) of amplitude A and frequency f (Fig.
7B,E,H top). In all simulations, f = 0.1 Hz, τdend = 100 ms, and
τsyn = 5 ms. Because τdend >> τsyn, the model behaves qualitatively
like the analytic model (equations 2–4), and we define  as in
that model (equation 4).

In the absence of noise, the sinusoidal input periodically
cycles through very small velocities that are insufficient to push
the band far enough to be outside the line, i.e. to reach the ‘on’
or ‘off’ activation thresholds of any dendrites. Therefore, no
dendrites are flipped ‘on’ or ‘off’ at these times, although
dendrites that are flipped ‘on’ previous to these times continue
to relax towards a steady state for a time τdend. Thus, if the input
causes the line to remain in the band for times much greater
than τdend,  will remain essentially unchanged for these times
(Fig. 7B, bottom, flat sections of gray lines). For sufficiently low
amplitude inputs (Fig. 7B, top, dashed line), the input is never
large enough to push the band outside the line and  does not
change at all (Fig. 7B, bottom, dashed gray line). It should be
noted that, although  does not change, the firing rates of the
neurons (not shown) still do show some modulation that
reflects the direct influence of the velocity input on the firing
rate (equation 12).

When noise is included in the model, the insensitivity to small
inputs can be overcome. To model the effects of noise, we add
low-pass filtered Gaussian noise into each dendrite. This is

Figure 6. Dendritic hysteresis can lead to history dependence in rate–rate
relationships. (A) Firing rates of a low firing-rate threshold (top) and high firing-rate
threshold (bottom) neuron in a well-tuned network with parallel-edge shaped band and
with outer product form broken by having a linear dependence of the ‘on’ and ‘off ’
dendritic-activation thresholds on the neuron’s firing-rate threshold. Parameters are as
described in Figure 4 except that α=1, the son,i /α are equally spaced from 42 Hz for
the lowest-threshold neuron down to 36 Hz for the highest firing-rate threshold neuron,
and the soff,i /α are equally spaced from 28 Hz for the lowest firing-rate threshold neuron
up to 34 Hz for the highest firing-rate threshold neuron. For the same value of firing rate
of the low firing-rate threshold neuron (top, gray arrows), the high firing-rate threshold
neuron has a relatively larger value following ON-direction saccades (bottom, gray
arrows). Plots correspond to the 20th and 80th neurons in the network when neurons
are ordered by firing-rate threshold. (B) Firing rates of the high firing-rate threshold
neuron of panel A as a function of the low firing-rate threshold neuron’s firing rate
following ON-direction (black) or OFF-direction (gray) saccades. Note the hysteretic
relationship. (C) Qualitative explanation for ON–OFF hysteresis. Dendrites on the high
firing-rate threshold neurons turn ‘on’ before those on the low firing-rate threshold
neurons as the network activity increases (corresponding to firing rates and eye
position increasing) and turn ‘off ’ before those on the low firing-rate threshold neurons
as the network activity decreases. This leads to relatively higher firing rates of the high
firing-rate threshold neurons relative to the low firing-rate threshold neurons following
ON-direction saccades and relatively lower rates following the OFF-direction saccades.

Ê Ê

Ê
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accomplished by adding to each neuron’s firing rate an inde-
pendently generated Gaussian noise value every 1 ms. This firing
rate noise is then filtered by the synaptic time constant τsyn = 5
ms so that each of the dendrites to which a neuron projects
receives low-pass filtered Gaussian noise. Modeled in this
manner, the noise acts as an external input that randomly jiggles
each of the hysteretic rectangles in the positive feedback band
left and right. If a noise fluctuation is larger than a minimum size
equal to the width of the band, then it can cause  to drift. The
width σ of the Gaussian noise distribution was chosen so that

the characteristic size of the fluctuations in the noise input to
each dendrite is slightly smaller than the width of the band, in
particular just large enough to occasionally turn dendrites ‘on’
or ‘off’. This causes a realistic amount of random drift in  fixa-
tions (Fig. 7C). Considerably larger noise values cause much
larger drift in fixations and considerably smaller values cause
fixations to be perfectly stable as in the simulations without
noise.

Adding even small amounts of command input on top of this
noise causes the random drift to obtain a bias. In this way, the
network can be driven (Fig. 7B, bottom, black dashed line) by
small VOR inputs (Fig. 7B, top, dashed line) that, in the absence
of noise, would not cause any change in  (Fig. 7B, bottom,
gray dashed line).

Both fixations and the VOR show some drift or inaccuracy,
respectively, when noise is added to the model and the coupling
strengths or tonic inputs are mistuned by amounts less than the
width of the band. This is because, when the band is not
centered about the 45° line, the response to positive and nega-
tive command inputs or noise fluctuations are unequal. For
example, if the band is slightly mis-centered towards reduced
positive feedback (Fig. 7D, 2% mistuning towards decay from
perfect centering of the band), noise fluctuations are more likely
to cause negative than positive eye drifts. In this way, unlike in
the simulations with parallel-edge shaped band but no noise
(Fig. 5C), small amounts of mistuning can lead to small amounts
of drift. Nevertheless, the amount of drift is much smaller than
would occur in the absence of hysteresis (compare to Fig. 7I,
which shows  for the same amount of mistuning in a model
without hysteresis or noise; results are similar to Fig. 7I if noise
is added in the absence of hysteresis).

Relative to fixations, the VOR is less robust because its
response reflects both an asymmetry in the response to noise
and an asymmetry in the response to the VOR command inputs.
Again consider an integrator with feedback that is insufficient to
center the band about the line (Fig. 7D). For sinusoidal
command inputs (Fig. 7E) with the same noise level and same
command input as was considered in the perfectly centered
band of Figure 7B, the response of the network is now greater to
negative inputs than to positive inputs. This asymmetry in
response reflects that additional command inputs and noise are
more likely to push the band outside the decay line in the nega-
tive-velocity direction than in the positive-velocity direction.
Although these deviations are larger than those for the fixations,
they are nevertheless somewhat smaller than would be the case
for the same amount of mistuning in the absence of hysteresis
(Fig. 7H, amplitude of input is scaled to make amplitude of
response comparable to that in Fig. 7E).

Discussion
We have shown how a recurrent network model with multiple
bistable dendrites per neuron can maintain stable persistent
neural activity without precise tuning of model parameters and
without large discontinuities in firing rate with small changes in

. The robustness of stable fixations to perturbations in param-
eters arises because the bistable dendritic compartments are
unresponsive to small changes in their inputs. The main purpose
of including multiple dendritic subunits in this model is to
reduce the large jumps in firing rate that would typically be asso-
ciated with a somatic mechanism of bistability. Linear quasi-

Figure 7. Performance of a network with dendritic hysteresis during the sinusoidal
VOR. (A) Band shape for a well-tuned network with band centered about the line. (B)
The network response to 0.1 Hz sinusoidal input without noise shows a truncated
sinusoidal behavior for larger input (A = 4.5 Hz, solid lines) and is unresponsive for
smaller input (A = 0.8 Hz, top, dashed line; bottom, gray dashed line). With noise and
the smaller (A = 0.8 Hz) input, the network is responsive throughout the sinusoidal
cycle (bottom, black dashed line). σ  = 4 Hz in all panels that include noise. (C)
Fixations for the same amount of noise as in B. (D,G) Band shape for a network
mistuned towards decay by 2% for a band width that produces stable fixations for
±10% mistuning of weights with noise (D) or for a non-hysteretic band and no noise
(G). (E,H) The network response is more sensitive to negative velocity commands than
to positive commands, causing  to decay. The decay is less for the band with
hysteresis (E; A = 0.8 Hz) than for one without (H; A = 0.6 Hz). (F,I) Fixations with
hysteresis and noise show some decay (F) but less than is shown by the VOR (E) and
much less than would occur in the absence of hysteresis (I). Saccadic amplitudes were
set to give approximately equal ranges of eye position. Flat portions of traces in H and
I reflect the effects of discreteness.
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continuous firing rate versus  relationships can result from the
successive recruitment of many dendritic compartments with
increasing . In this manner, our model maintains the robust-
ness that was attributable to bistability in other models (Camperi
and Wang, 1998; Koulakov et al., 2002) while distributing the
jumps in firing rate across multiple compartments. Further,
neuron pair firing rate versus firing rate relationships can be
hysteretic in the manner seen in experiments (Aksay et al.,
2003) if the parameters of the bistable dendritic compartments
are assumed to differ systematically with the neuron’s firing rate
threshold (Fig. 6).

We have not assumed any particular mechanism of dendritic
bistability. Previous work has implicated, among others, the
voltage-dependent properties of NMDA and voltage-sensitive
Ca2+ channels as sources of dendritic bistability (Hounsgaard and
Kiehn, 1993; Reuveni et al., 1993; Yuste et al., 1994; Lee and
Heckman, 1998a,b; Schiller et al., 2000). The graphical analysis
of our model (Fig. 3) suggests that any mechanism that provides
a hysteretic response to inputs can add robustness to fixations.
The amount of robustness relates to the width of the hysteretic
response. Robust quasi-continuous performance is not obtained
if the dendrites in our model are made binary but not hysteretic.
This implies that hysteresis, rather than the binary nature of the
dendritic compartments, is the crucial feature of our model for
robustness.

Specific mechanisms of achieving bistability might have
different advantages when considered in detail. For example,
we have found that the ability of the network to maintain stable
fixations is not particularly sensitive to whether the dendrite or
synapse provides the slow time constant underlying recurrent
feedback. However, differences in synaptic dynamics can have
notable differences on the exact form of ON–OFF hysteresis in
the rate–rate relationships and in the amplitude of the response
to command inputs or noise. Future models should also include
both hysteretic and non-hysteretic components for the dendritic
responses.

The weighted dendritic activations WijDij = ζiηjDj(rj) in the
analytic model were taken to be a perfect outer product. This
approximation should be regarded as a computational conven-
ience that simplifies the network behavior to a one-dimensional
set of possible eye positions governed by equation 5 and makes
the analysis of the model analytically tractable. More realistically,
integrator networks display multi-dimensional behavior — the
outer-product form can be considered a trick for reducing this
more complicated behavior to a single ‘integrating mode’.
However, the outer-product form also implies that there is no
hysteresis in the firing rate versus firing rate relationships during
fixations. Relaxing this assumption in an appropriate manner
can lead to more interesting effects as a result of corresponding
dendrites on different neurons being recruited at different times.
Such effects can include ON–OFF hysteresis in rate–rate rela-
tionships (Fig. 6) or other history-dependent trends in rate–rate
relationships [such as the ON1–ON2 hysteresis observed in
Aksay et al. (2003)]. However, it is not yet clear experimentally
whether the ON–OFF hysteresis or other history-dependent
effects are due to an actual bistable hysteretic element as was
used in this model or are due to more complicated dynamics that
may be present in multi-dimensional models [for more on this
issue, see the discussion in Aksay et al. (2003)].

The outer product form of the analytic model also implies that
all of the dendrites to which a neuron projects turn ‘on’ and ‘off’
simultaneously. This leads to N groups of identically behaving

dendritic compartments, and N stable eye positions. If,
however, these dendrites have a staggered recruitment order
then, in principal, the number of states of the network could be
much larger than N. If there is additionally some graded compo-
nent to the neuron’s input, rather than the binary steady-state
dendritic activation assumed for simplicity here, then each
neuron could additionally have many more than the M states
corresponding to the number M of independent dendritic subu-
nits. Although it is not presently known how many independent
dendritic subunits may be contained in a single integrator
neuron, modeling work (Koch et al., 1982; Poirazi et al.,
2003a,b) suggests that neurons in other systems may contain as
many as ∼30 approximately independent subunits.

We have assumed that the dendritic compartments act inde-
pendently of each other and of the somatic voltage. This is
consistent with the studies of Poirazi et al. (Poirazi et al.,
2003a,b), which find that a neuron’s firing rate can be well-
approximated by a sum of independent dendritic contributions
followed by a static nonlinearity. We have found that isolation of
the dendritic voltage from the somatic voltage can be achieved
if the dendritic tree is large compared with the soma and the
locus of plateau generation is distal, so that somatic currents are
effectively shunted (Goldman et al., 2002b). If the dendritic bist-
ability is mediated by the NMDA receptor, the dependence of
NMDA activation on presynaptic activity could provide addi-
tional isolation from the soma (Lisman et al., 1998; Schiller and
Schiller, 2001; Koulakov et al., 2002).

The strongest predictions of this model relate to the VOR.
Dendritic bistability provides robustness for fixations by being
unresponsive to small inputs. This implies that there is a
threshold value below which vestibular input cannot activate
the VOR and below which noise will not affect the activation
state of the dendrites. We have shown that when the amplitude
of noise is close to this threshold value, the network becomes
responsive to any additional inputs such as head velocity
commands associated with the VOR. An implication of this
modeling is that there is a tradeoff: with little noise, the network
is insensitive to small vestibular inputs; with more noise, the
fixations show random drift and become more sensitive to
mistuning (Fig. 7F). This result suggests that the amplitude of
the noise should assume an intermediate value roughly equal (in
appropriate units) to the size of the hysteresis band. If this is the
case, one might be able to indirectly estimate the width of the
hysteresis band in a given system by measuring the noise in the
firing rates and synaptic transmission properties.

Even with noise, the sensitivity to mistuning for fixations is
still far less than would occur in the absence of hysteresis (see
Fig. 7I). For the VOR, the hysteresis band also contributes some
robustness (Figs 7E,H) although the robustness of the VOR is
less than that of the fixations. With less noise (not shown), the
difference between the VOR and fixation performances are even
larger — this can be understood easily by considering the limit of
no noise, for which the fixations are stable so long as the band
encloses the 45° decay line but the response to the VOR is never-
theless asymmetric when the command inputs move the band
far enough that it no longer encloses the decay line. Previous
work (Goldman et al., 2002a) comparing the fixation and VOR
time constants following a cumulative series of permanent
lesions found that the fixation time constant did drop less than
the VOR time constant following the early lesions, consistent
with this prediction, but the data is quite noisy.
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For working memory systems that do not continuously
integrate inputs, constant-rate persistent neural activity might be
the only relevant neuronal response. Dendritic bistability
provides a biophysically plausible mechanism for stably main-
taining constant-rate activity in the absence of external input.
Thus, this work more generally proposes a hypothesis for how
memory ‘fixations’ may be held robustly by neurons with
discernibly continuous firing rate responses.
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Appendix: Model Analysis and Solution

Conditions for Uniqueness of the Positive Feedback Band Shape
In the main text, we graphically represent the positive feedback term

of equation (5) as a static ‘band-like’ function of  (Figs 3–6). Given this
band, the eye velocity is determined as the difference between this band
and the 45° line representing . In general, the shape of this band is not
static and depends on the relative strengths and histories of the inputs to
the integrator. Here, we explain how this history-dependence arises and
derive conditions under which the positive feedback can be represented
by a static, history-independent band.

The essential assumption that allows the consideration of static bands
in the main text is that the order of dendrites turning ‘on’ is history-inde-
pendent and exactly the reverse of the order of dendrites turning ‘off’.
This is certainly the case under two conditions: (1) the ordering of ‘on’
thresholds is the same as the ordering of the ‘off’ thresholds. That is, if
ron,i<ron,j then roff,i<roff,j. (2) The inputs are arranged such that dendrite i
always turns on before dendrite i + 1 and turns ‘off’ after dendrite i + 1.
This condition would be violated if, for example, a large input to dendrite
i caused it to turn on before dendrite i – 1. Condition 2 can be guaranteed
so long as positive inputs to dendrites with lower ‘on’ thresholds are at
least as large as those to dendrites with higher ‘on’ thresholds, and nega-
tive inputs to dendrites with higher ‘off’ thresholds are at least as large in
magnitude as negative inputs to dendrites with lower ‘off’ thresholds.

We illustrate these conditions by examining the possible states of each
of the dendrites that make up the band as a function of . In the absence
of external inputs (rcom,i = 0 for all i), hi(ri) is determined by the value of
its input ri relative to its ‘on’ and ‘off’ thresholds ron,i and roff,i. From equa-
tion 3, hi(ri) equals:

(13)

where by ‘history-dependent’ it is meant that the dendrite could be either
‘on’ or ‘off’ depending on the previous history of the input.

Possible band structures that violate assumptions 1 and 2 above are
depicted in Figure 8. Assumption 1 can be violated when two dendrites
do not obey the same recruitment order for increasing and decreasing
eye positions (Fig. 8A, top two dendritic rectangles). One dendrite (the
‘wider’ dendrite) has both a greater ‘on’ threshold as a function of  and
a lower ‘off’ threshold. For increasing eye positions, the ‘wider’ dendrite
turns ‘on’ after the ‘narrower’ dendrite (Fig. 8A, top). For decreasing eye
positions, the ‘wider’ dendrite remains ‘on’ after the ‘narrower’ dendrite
turns ‘off’ (Fig. 8B, bottom). Thus, the band shape differs depending on
whether the eye position is increasing or decreasing.

Even when the ‘on’ and ‘off’ thresholds have the same order (assump-
tion 1), the neurons in the ‘history-dependent’ state (equation 13) can be
recruited in a different order from these thresholds (violating assumption
2). Figure 8B shows a possible band structure resulting from a dendrite
with a higher ‘on’ threshold receiving a larger input than a dendrite with
a lower ‘on’ threshold. The band structure reflects that any dendrite with
bistable region straddling  could be either ‘on’ or ‘off’ depending on
the history of the inputs. Of course, if the hysteretic rectangles are of
different heights then there may be only one arrangement of inputs that
strictly leads to a particular value of , but for many thousands of
dendrites and realistic amounts of noise, such precision would not be
detectable.

Derivation of Tolerance to Mistuning for a Network with 
Parallel-stripe Shaped Band
We here derive equation (6) for the tolerance to mistuning of the
coupling strengths W in a network with the parallel-edge shaped band
defined by ron,i = ron, roff,i = roff, Wij = W = ζη, and equally spaced tonic
inputs

where .
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Figure 8. Sources of non-uniqueness in the band structure. (A) When some dendritic
hysteretic rectangles are wider than others (top two rectangles), the order of turning
‘on’ dendrites can be different from the order of turning ‘off ’ dendrites. This can result
in a different band structure for a given value of  (dash on y-axis) depending on
whether the input arrived at this value from a lower value of  (top panel) or from a
higher value (bottom panel). (B) When the input to a higher activation-threshold
dendrite is greater than that to a lower activation-threshold dendrite (middle neurons of
band), the higher activation-threshold dendrite may turn ‘on’ before the lower
activation-threshold dendrite. Analogous behavior can occur for dendrites turning ‘off ’.
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For an eye position  corresponding to m ‘on’ dendrites to be
stably maintained in the absence of external inputs, the presynaptic rates
of all neurons must satisfy:

(14)

The first inequality gives the condition that the network feedback must
be sufficiently small that it does not flip ‘on’ the (m + 1)th dendrite. The
second inequality gives the condition that the network feedback must be
large enough to not flip ‘off’ the mth dendrite. These conditions are most
strict for m = N – 1 in the first inequality and m = N in the second
inequality. Therefore, the range of Ws that will guarantee stable fixations
at all values of  are

(15)

where we have substituted in the values of rton,i in deriving this relation-
ship. Finally, defining W* to be the midpoint of the above range of Ws and
∆W to be the width of the allowed range, we get after some manipulation
that the fractional tolerance of the network to perturbations, ∆W/W*, is
given by

(16)

Derivation of Tolerance to Mistuning for a Network with Cone-
shaped Band
We derive the tolerance to mistuning of coupling strengths for a network
with the cone-shaped band pictured in Figure 5E (with constant parame-
ters ron,i = ron, roff,i = roff, ηi = η, and rton,i = rton, and with slopes ζi stag-
gered according to the relation

where .
For an eye position  corresponding to m ‘on’ dendrites to be

stably maintained in the absence of external inputs, the presynaptic rates
of all neurons must satisfy:

(17)

where Wm = ζmη. In the limit that the number of neurons  so that
the weights form a continuum, we may approximate . Then
equation (17) reduces to

(18)

Defining  to be the midpoint of this range and ∆Wm to be the width
of this range, the fractional tolerance to mistuning  is inde-
pendent of m and equals the expression given in equation (7).

References
Aksay E, Baker R, Seung HS, Tank DW (2000) Anatomy and discharge

properties of pre-motor neurons in the goldfish medulla that have
eye-position signals during fixations. J Neurophysiol 84:1035–1049.

Aksay E, Gamkrelidze G, Seung HS, Baker R, Tank DW (2001) In vivo
intracellular recording and perturbation of persistent activity in a
neural integrator. Nat Neurosci 4:184–193.

Aksay E, Major G, Goldman MS, Baker R, Seung HS, Tank DW (2003)
History dependence of rate covariation between neurons during
persistent activity in an oculomotor integrator. Cereb Cortex
13:1173–1184.

Camperi M, Wang XJ (1998) A model of visuospatial working memory in
prefrontal cortex: recurrent network and cellular bistability. J
Comput Neurosci 5:383–405.

Cannon SC, Robinson DA (1985) An improved neural-network model for
the neural integrator of the oculomotor system: more realistic neuron
behavior. Biol Cybern 53:93–108.

Cannon SC, Robinson DA, Shamma S (1983) A proposed neural network
for the integrator of the oculomotor system. Biol Cybern 49:127–136.

Goldman MS, Kaneko CR, Major G, Aksay E, Tank DW, Seung HS (2002a)
Linear regression of eye velocity on eye position and head velocity
suggests a common oculomotor neural integrator. J Neurophysiol
88:659–665.

Goldman MS, Levine JH, Major G, Aksay E, Tank DW, Seung HS (2002b)
Dendritic bistability increases the robustness of persistent neural
activity in a model oculomotor neural integrator. Soc Neurosci Abstr
28:266.14.

Hounsgaard J, Kiehn O (1993) Calcium spikes and calcium plateaux
evoked by differential polarization in dendrites of turtle moto-
neurones in vitro. J Physiol (Lond) 468:245–259.

Kamath BY, Keller EL (1976) A neurological integrator for the oculo-
motor control system. Math Biosci 30:341–352.

Koch C, Poggio T, Torre V (1982) Retinal ganglion cells: a functional
interpretation of dendritic morphology. Philos Trans R Soc Lond B
Biol Sci 298:227–263.

Koulakov AA, Raghavachari S, Kepecs A, Lisman JE (2002) Model for a
robust neural integrator. Nat Neurosci 5:775–782.

Lee RH, Heckman CJ (1998a) Bistability in spinal motoneurons in vivo:
systematic variations in persistent inward currents. J Neurophysiol
80:583–593.

Lee RH, Heckman CJ (1998b) Bistability in spinal motoneurons in vivo:
systematic variations in rhythmic firing patterns. J Neurophysiol
80:572–582.

Lisman JE, Fellous JM, Wang XJ (1998) A role for NMDA-receptor chan-
nels in working memory. Nat Neurosci 1:273–275.

Pastor AM, De la Cruz RR, Baker R (1994) Eye position and eye velocity
integrators reside in separate brainstem nuclei. Proc Natl Acad Sci
USA 91:807–811.

Poirazi P, Brannon T, Mel BW (2003a) Arithmetic of subthreshold
synaptic summation in a model CA1 pyramidal cell. Neuron
37:977–987.

Poirazi P, Brannon T, Mel BW (2003b) Pyramidal neuron as two-layer
neural network. Neuron 37:989–999.

Pouget A, Latham P (2002) Digitized neural networks: long-term stability
from forgetful neurons. Nat Neurosci 5:709–710.

Reuveni I, Friedman A, Amitai Y, Gutnick MJ (1993) Stepwise repolariza-
tion from Ca2+ plateaus in neocortical pyramidal cells: evidence for
nonhomogeneous distribution of HVA Ca2+ channels in dendrites. J
Neurosci 13:4609–4621.

Robinson DA (1981) Control of eye movements. In: Handbook of physi-
ology. The nervous system. visual motor control (Desmedt JE, ed.),
pp. 1275–1320. Bethesda, MD: American Physiology Society.

Rosen MJ (1972) A theoretical neural integrator. IEEE Trans Biomed Eng
19:362–367.

Schiller J, Schiller Y (2001) NMDA receptor-mediated dendritic spikes
and coincident signal amplification. Curr Opin Neurobiol 11:343–348.

Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal
dendrites of cortical pyramidal neurons. Nature 404:285–289.

Seung HS (1996) How the brain keeps the eyes still. Proc Natl Acad Sci
USA 93:13339–13344.

Seung HS, Lee DD, Reis BY, Tank DW (2000) Stability of the memory of
eye position in a recurrent network of conductance-based model
neurons. Neuron 26:259–271.

Yuste R, Gutnick MJ, Saar D, Delaney KR, Tank DW (1994) Ca2+ accumu-
lations in dendrites of neocortical pyramidal neurons: an apical band
and evidence for two functional compartments. Neuron 13:23–43.
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