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There are numerous reports on rhythmic coupling between separate brain
networks. It has been proposed that this rhythmic coupling indicates ex-
change of information. So far, few computational models have been pro-
posed that explore this principle and its potential computational benefits.
Recent results on hippocampal place cells of the rat provide new insight;
it has been shown that information about space is encoded by the fir-
ing of place cells with respect to the phase of the ongoing theta rhythm.
This principle is termed phase coding and suggests that upcoming loca-
tions (predicted by the hippocampus) are encoded by cells firing late in
the theta cycle, whereas current location is encoded by early firing in the
theta cycle. A network reading the hippocampal output must inevitably
also receive an oscillatory theta input in order to decipher the phase-coded
firing patterns. In this article, I propose a simple physiologically plausi-
ble mechanism implemented as an oscillatory network that can decode
the hippocampal output. By changing only the phase of the theta input to
the decoder, qualitatively different information is transferred: the theta
phase determines whether representations of current or upcoming loca-
tions are read by the decoder. The proposed mechanism provides a compu-
tational principle for information transfer between oscillatory networks
and might generalize to brain networks beyond the hippocampal region.

1 Introduction

Occasional frequency locking is often observed between two or more brain
regions (for an extensive review see Varela, Lachaux, Rodriguez, & Martin-
erie, 2001). This coherent oscillatory activity could indicate exchange and
manipulation of information between networks. For instance, whisker
twitching in the rat synchronizes the neural activity in the brain stem, tha-
lamus, and primary somatosensory cortex at a 7–12 Hz rhythm (Nicolelis,
Baccala, Lin, & Chapin, 1995). The olfactory system provides numerous
examples of rhythmic coupling. In the cat, synchronized oscillations in the
35–50 Hz band were measured between the entorhinal cortex, posterior per-
iform cortex, and olfactory bulb during odor sampling (Boeijinga & Lopes
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da Silva, 1989). In the salamander, the presentation of odors elicits 10–20 Hz
synchronized oscillations in the olfactory epithelium and olfactory bulb
(Dorries & Kauer, 2000). When rats are performing demanding olfactory
memory tasks (reversal learning), the hippocampal theta rhythm occasion-
ally couples to the sniffing rhythm (Macrides, Eichenbaum, & Forbes, 1982).
In humans, long-range oscillatory synchrony has been reported. An elec-
troencephalogram (EEG) study demonstrated coherence in the 4–7 Hz band
between frontal and posterior regions in a working memory task (Sarnthein,
Petsche, Rappelsberger, Shaw, & von Stein, 1998).

Beyond the work of Ahissar, Haidarliu, and Zacksenhouse (1997) and
Ahissar, Sosnik, and Haidarliu (2000) on somatosensory processing, little
theoretical work has been done to explore the potential computational ad-
vantages of information exchange between oscillatory brain networks. The
rat hippocampus and regions to which it projects provide an excellent sys-
tem for exploring theoretical ideas on oscillatory coupled networks. Of par-
ticular interest are the firing properties of hippocampal place cells (O’Keefe
& Dostrovsky, 1971; Olton, Branch, & Best, 1978), which are strongly modu-
lated by the theta rhythm: as a rat enters a place field, place cells fire late in
the theta cycle. As the rat passes through the place field, the phase of firing
advances systematically (O’Keefe & Recce, 1993; Skaggs, McNaughton, Wil-
son, & Barnes, 1996; Shen, Barnes, McNaughton, Skaggs, & Weaver, 1997).
This effect is termed the theta phase precession or phase advance. Recently it
was demonstrated that when reconstructing a rat’s location from an ensem-
ble of place cells, the error of reconstruction is significantly reduced when
the theta phase of firing is taken into account (Jensen & Lisman, 2000). This
result supports the case that information is encoded by the theta phase of
firing: phase coding. A network receiving the hippocampal firing pattern,
for example, the entorhinal and cingulate cortex, can by phase decoding ex-
tract information beyond what is encoded in the firing rates. The decoding
network must necessarily also receive information about the theta rhythm.
Hence, if one accepts the principle of phase coding, there might be an ad-
vantage to oscillatory coupling between networks. To explore this idea, I
will suggest a physiologically plausible oscillatory network that can read
the hippocampal phase code.

Section 2 is devoted to an improved implementation of the Jensen and
Lisman oscillatory network model (Jensen & Lisman, 1996a), which, by
sequence readout, can account for the theta phase precession and thereby
the generation of phase-coded information (the phase encoder). The output
produced by this network is then used to test the network receiving the
hippocampal phase code (the phase decoder). By numerical simulations,
I will demonstrate how qualitatively different information is transferred
from one network to the other, depending on only the phase lag between
the networks. I then discuss the brain regions that might perform the phase
decoding and different principles according to which the phase decoding
might work. The model framework results in a set of testable predictions.
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2 Methods

The model presented in this article consists of two networks—one represent-
ing the hippocampal phase encoder (CA3) and the other the phase decoder.
I describe each network individually. A diagram of the network model is
shown in Figure 1.

2.1 The Hippocampal Phase Encoder. This network is an improved ver-
sion of a previously proposed network model (Jensen & Lisman, 1996a),
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Figure 1: A schematic illustration of the oscillatory networks responsible for
performing the phase encoding and decoding. The pyramidal neurons of the
CA3 region (left) receive informational input from the perforant path or the
mossy fibers. The synchronized activity of the inhibitory network is represented
by a single interneuron providing local GABAergic feedback. The theta drive
is imposed externally on all pyramidal neurons. Sequence representations are
encoded by the synapses of the recurrent CA3 collaterals. The pyramidal cells of
the phase decoder (right) receive excitatory input from a subset of the pyramidal
neurons and the theta input.
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which can account for the phase precession by repeated sequence read-
out. In the original network, the model neurons were implemented without
a membrane capacitance. This has been improved by implementing each
neuron with a membrane capacitance so they function as leaky integrate-
and-fire units (Koch & Segev, 1998). The advantage of integrate-and-fire
units is that they are computationally inexpensive since the sodium, potas-
sium, and calcium currents producing a spike are not modeled explicitly.
The simplicity of the integrate-and-fire units is mainly justified by the in-
hibitory feedback from the interneurons. This feedback hyperpolarizes the
cells in the network well below firing threshold after a subset of pyrami-
dal neurons has fired. Thus, the detailed membrane dynamics following an
action potential is of less importance. The representation of the interneu-
ronal network responsible for generating the GABAergic feedback has also
been improved. The interneuronal network is represented by an inhibitory
integrate-and-fire unit rather than just as a function of the spike times of the
pyramidal neurons. In the original model, representations of locations were
modeled by only a single cell per location (Jensen & Lisman, 1996a). To sim-
ulate a location which is represented by the simultaneous firing of a group of
neurons, five cells firing in synchrony will represent a location. The full hip-
pocampal network has 45 pyramidal neurons and one inhibitory interneu-
ron.

The membrane potential of each pyramidal neuron is modeled by the
equation:

−C
dV
dt

= IL + IAHP + I!,hippo + Isyn,GABAA
+ Isyn,AMPA

+ Isyn,RC + Inoise. (2.1)

The membrane potential is reset to Vrest = −65 mV when it reaches the
threshold Vthreshold = −55 mV. This event represents a spike or a short burst.
The membrane capacitance is C = 0.5 µF/cm2. The leakage current is de-
fined as IL = gL(V − EL) with the reversal potential EL = −65 mV and
conductance gL = 0.03 mS/cm2. The conductance of the slow afterhyperpo-
larization (AHP) current is modeled by a decreasing exponential function:
gAHP(t) = g′

AHP exp(− t−tspike
τAHP

), where tspike is the time when the cell spikes
and g′

AHP = 0.06 mS/cm2 and τAHP = 40 ms. The AHP current is defined as
IAHP = gAHP(t)(V − EAHP), where EAHP = −70 mV. The slow AHP current
makes it less likely for a pyramidal cell to fire multiple times within a theta
cycle.

The septal input to the hippocampus that provides the drive at theta
frequency is modeled as I!,hippo = I′!cos(2π f!t), where the theta frequency
is f! = 7 Hz and I′! = 0.18 µA/cm2.
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The informational input to the CA3 (from the perforant path or the mossy
fibers) excites the pyramidal neurons synaptically by AMPA-receptor-
mediated currents. The AMPA receptor conductances are modeled by α-
functions, gAMPA(t) = g′

AMPA
t−tinput
τAMPA

exp(− t−tinput
τAMPA

), and the excitatory post-
synaptic currents (EPSCs) are IAMPA = gAMPA(t)(V − EAMPA). The constants
are τAMPA = 3 ms, EAMPA = 0 mV, and g′

AMPA = 0.13 mS/cm2.
The conductance of the GABAergic input is implemented by an α-

function: gGABA(t) = g′
GABA

t−tspike,inh
τGABA

exp(− t−tspike,inh
τGABA

), where tspike,inh denotes
the time of spiking of the neuron representing the interneuronal network.
The inhibitory postsynaptic current (IPSC) is expressed as IGABA = gGABA(t)
(V − EGABA), where τGABA = 5 ms, EGABA = −70 mV, and g′

GABA = 0.15
mS/cm2. The neuron representing the inhibitory network is modeled by a
leaky integrate-and-fire unit:

−C
dV
dt

= IL + IAHP + Isyn,AMPA + Inoise. (2.2)

The parameters that are different from those of the excitatory neurons (see
equation 2.1) are C = 0.25 µF/cm2, g′

AHP = 0.60 mS/cm2, and τAHP =
5 ms. All the pyramidal neurons are connected to the inhibitory neuron
with AMPA synapses, g′

AMPA = 0.026 mS/cm2. With these settings, the
interneuron will fire after four to five pyramidal cells fire synchronously.
For a justification of the time constants and reversal potentials, see Jensen,
Idiart, and Lisman (1996) and Jensen and Lisman (1996b).

The excitatory feedback of the CA3 recurrent collaterals produces the
sequence readout creating the phase code. Since the excitatory feedback has
to outlast at least the interval of the inhibitory feedback (one gamma cy-
cle, 20–30 ms), it was suggested that NMDA receptors with a decay time
of approximately 100 ms mediate the excitation (Jensen & Lisman, 1996a,
1996b). This hypothesis has become less plausible in the light of recent re-
sults demonstrating that place fields of well-learned environments are rela-
tively unaffected by the NMDA antagonist CPP (Kentros et al., 1998). Several
alternatives exist. One possibility is that the firing of CA3 pyramidal cells is
sustained by reciprocal connections between the dentate and CA3 during
each gamma cycle (Lisman, 1999). Another solution is that kainate receptors
mediate the slow excitatory feedback. Kainate receptors are found postsy-
naptically at CA3 neurons and have a decay time of 50–100 ms (Castillo,
Malenka, & Nicoll, 1997; Yamamoto, Sawada, & Ohno-Shosaku, 1998). Al-
though most research has concentrated on kainate receptors at mossy fiber
terminals, it is possible that they also are involved in mediating recurrent
CA3 excitation. Further research is required to identify the details of the
recurrent excitation creating the sequence readout. In this work, I assume
that kainate receptors are responsible. Thus, the time-dependent conduc-
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tance of the synapses of the CA3 recurrent collaterals (RC) at cell i from cell j
(spiking at time tj

spike) is modeled by a double exponential function:

gij
RC(t) = g′

RCWij
CA3 exp



−
t − tj

spike

τRC,decay







1 − exp



−
t − tj

spike

τRC,rise







 , (2.3)

where Wij
CA3 is the synaptic weight from cell j to cell i and the common scaling

constant is g′
RC = 0.0061 mS/cm2. The rise and decay times at room tempera-

ture of the kainate receptors have, respectively, been estimated to τrise ≈ 7 ms
and τdecay = 60–100 ms. Since the kinetics is faster at body temperature,
the constants are set to τRC,rise = 5 ms and τRC,decay = 40 ms. The model is
fairly robust with respect to variations of these time constants. The total cur-
rent to cell i from the recurrent collaterals is Isyn,RC =

∑

j gij
RC(t)(Vi − ERC)

where ERC = 0 mV. The sequence of locations is encoded in the asym-
metric weight matrix Wij

CA3. The synaptic strengths for representation N
(cell j = 1+5(N −1) to 5N) to representation N +K (cell i = 1+5(N +K−1)

to 5(N + K)) are Wij
CA3 = exp(− KTγ

τdecay
)(1 − exp(− KTγ

τrise
)). The time Tγ = 30 ms

is approximately the period of a gamma cycle. As a result, representation A
(N = 1) is connected most strongly to representation B (N = 2), with weaker
connections to representation C (N = 3), and so on. It has previously been
demonstrated how an asymmetric synaptic weight matrix could emerge
in a model with NMDA-dependent long-term potentiation (LTP) (Blum &
Abbott, 1996; Jensen & Lisman, 1996b).

2.2 The Phase Decoder. This network receives an afferent input from
the CA3 network (see Figure 1). The membrane potential of each of the nine
cells in the decoder is defined as

−C
dV
dt

= IL + Isyn,AMPA + I!,decoder + Inoise. (2.4)

The theta drive takes the form I!,decoder = I′! cos(2π f!t +φ) where φ defines
the phase lag with respect to the hippocampal theta rhythm. The synaptic
AMPA conductances to cell k from hippocampal cell i are defined as

gik
syn,AMPA = Wik

decoder

t − ti
spike

τAMPA
exp

(

−
t − ti

spike

τAMPA

)

, (2.5)

where the matrix Wik
decoder defines the connectivity from the hippocampus to

the decoder. The first five cells in the hippocampal network are connected
to the first cell of the decoder: Wi1

decoder = 0.006 µS/cm2 for i = 1, . . . , 5.
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Cells 6 to 10 are connected to the second cell of the decoder: Wi2
decoder =

0.006 µS/cm2 and so on. For the other connections, Wik
decoder = 0. Cells in

the decoder will fire when they receive sufficiently strong synaptic input
coinciding with a depolarizing theta drive. Constants that are different from
those of the pyramidal neurons in the encoder are I′! = 0.18 µA/cm2 and
g′

AMPA = 0.006 mS/cm2. In the simulations, gaussian distributed noise, Inoise,
with a mean of 0 and a standard deviation of 0.1 µA/cm2 was applied to
all the neurons in the two networks. The differential equations defining the
networks were numerically integrated with the time step 't = 0.1 ms.

3 Results

Several groups have suggested that the theta phase precession is produced
by repeated readouts of time-compressed sequences (Jensen & Lisman,
1996a; Skaggs et al., 1996; Tsodyks, Skaggs, Sejnowski, & McNaughton, 1996;
Wallenstein & Hasselmo, 1997). Figure 2A illustrates this principle. Assume
that each location from A to I has a neuronal representation in the hippocam-
pus. These representations are linked synaptically as a sequence in the CA3
region as a result of the temporal asymmetry in NMDA-dependent long-
term potentiation (LTP) (Blum & Abbott, 1996; Jensen & Lisman, 1996b).
When the rat arrives at location A, the sequence from B to E is recalled
within a theta cycle. In the next theta cycle, the rat has advanced to loca-
tion B, and the sequence from C to F is recalled. When recording from a
place cell participating in the representation of location E, one observes a
systematic advance in the theta phase of firing as the rat traverses through
the place field: theta phase precession. A consequence of this model is that
qualitatively different information is encoded in the phases of the theta cy-
cle: predicted upcoming locations are represented by firing in the late phase
of the theta cycle, whereas current locations are represented by early-phase
firing. It is problematic to make the sequence models recall the individual
representations at a sufficiently slow rate (about seven representations per
theta cycle). Jensen and Lisman (1996a, 1997) proposed a solution in which
the gamma rhythm (30–80 Hz) clocks the sequence readout: within a theta
cycle, each of the recalled representations is separated in time by a hyperpo-
larizing GABAergic drive from the interneuronal network. This principle is
in agreement with experimental work showing that the gamma and theta
rhythms coexist in the rat hippocampus with a frequency ratio of about 5
to 10 (Soltesz & Deschenes, 1993; Bragin et al., 1995). Thus, the theta phase
of place cell firing advances about one gamma period per theta period. As
shown by Jensen and Lisman (1997) this scheme is in accordance with the ex-
perimental values for the phase precession and the observation that a place
cell is active for about 5 to 10 theta cycles as a rat crosses a place field (Skaggs
et al., 1996). Another finding consistent with the sequence readout models
is that the theta phase of firing advances as a function of location rather



2750 Ole Jensen

A

I
H
G
F
E
D
C
B

A

I
H
G
F
E
D
C
B

A

I
H
G
F
E
D
C
B

A

I
H
G
F
E
D
C
B

1) phase = 125°

2) phase = 0°

3) phase = 270°

4) phase = 180°

B)
 Decoder

C
ur

re
nt

 
lo

ca
tio

ns

theta

theta

theta

theta

U
pc

om
in

g 
ne

ar
 

lo
ca

tio
ns

U
pc

om
in

g 
di

st
an

t 
lo

ca
tio

ns
N

o 
tra

ns
fe

r

A
B
C
D
E
F
G
H
I

interneuron

B C DEFA BCDE C D F G D  E FGH E  FG HI

A B C D E

A)

E

 Encoder

theta

50 ms
50 mV



Information Transfer Between Rhythmically Coupled Networks 2751

than time (O’Keefe & Recce, 1993). This is a consequence of the sequence
recall being probed by the rat’s location. Finally, it was demonstrated that
if the synaptic strength of the encoded sequences increases with number of
presentations (Jensen & Lisman, 1996a), the sequence model can account for
the systematic expansion of place cells after multiple traversals of the same
path as observed experimentally (Mehta, Barnes, & McNaughton, 1997).
Since the theta-gamma model is consistent with these experimental find-
ings, it is a qualified candidate for a biophysically realistic mechanism that
can produce phase-coded information.

3.1 Simulation of the Hippocampal Phase Encoder. The model of the
hippocampal CA3 network (see Figure 1) is an improved version of a pre-
viously proposed model (Jensen & Lisman, 1996a). (For details on the im-
provements and implementation, see section 2.) The network has 45 pyra-
midal cells. The synchronous firing of 5 cells represents a location, allowing
the network to represent up to nine different locations. Only voltage traces
of 1 cell per representation are shown in Figure 2A (traces A–I). The last
trace illustrates the theta drive. When the rat arrives at location A, the first
5 pyramidal neurons of the CA3 are excited by inputs from the dentate
gyrus or by direct input from the entorhinal cortex (trace 1; only one neu-
ron shown). The firing of these 5 cells activates the next representation (B,
trace 2) by the CA3 recurrent collaterals. The firing pattern of representa-
tion B then activates representation C, and so forth. The inhibition from
the interneuron (second to the last trace) serves to keep the representa-
tions in the sequence separate in time. Simulations demonstrated that in the

Figure 2: Facing page. Simulations demonstrating information transfer by the
principle of phase encoding and decoding. (A) Hippocampal phase encoding
by sequence readout. The top panel illustrates a rat traversing a path from
left to right. Neuronal representations of locations A to E are received by the
hippocampus as the rat advances. At each location, a time-compressed sequence
of upcoming locations is recalled. In the simulations, each location is represented
by the synchronous firing of five cells, but only the voltage trace of one cell per
representation is shown (traces A–I). The second to the last trace is the voltage
trace of the inhibitory interneuron, and the last trace is the hippocampal theta
drive. (B) The voltage traces of the cells in the decoder and the theta inputs. The
only parameter varied in the simulations is the phase φ of the theta drive. In
panel 1, the decoder receives an input at 125 degrees, resulting in a transfer of
representations from the early phases of the hippocampal theta rhythm, that is,
the rat’s current location. In panel 2, the encoder receives a theta input in phase
(0 degree) with the hippocampus; thus upcoming near locations are transferred.
In panel 3, where the phase is 270 degrees, representations from the late theta
phase of the encoder are read out (i.e., upcoming distant locations). In panel 4,
the decoder receives a theta input in anti-phase with the input of the encoder,
and the information transfer is blocked.
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presence of noise, the sequences were recalled with few errors. About 5%
of the recalled patterns were represented by only 4 instead of 5 cells’ firing
simultaneously. The incomplete representations were due to cells’ failing to
fire or firing a gamma cycle too early or too late. Due to the redundancy of the
representations, these errors did not prevent a correct recall of the following
representations or errors in the phase decoding. Further simulations (not
shown) demonstrated that the model can tolerate at least a 20% overlap
between neighboring representations.

As an example of theta phase precession, consider the voltage trace of
a pyramidal cell participating in the representation of pattern E (marked
by the arrow). As the rat runs through the linear maze, the firing occurs
earlier and earlier in the theta cycle. It is the spatiotemporal firing pattern
that carries the phase-coded information.

3.2 Simulation of the Phase Decoder. The oscillatory network model
reading the hippocampal phase code is illustrated in the right-hand portion
of Figure 1. The hippocampal output of the CA3 region might pass several
structures, among others the CA1, before arriving at a network that can
perform the phase decoding. This work is not directly concerned with the
processing in these intermediate regions. (For a discussion on how other hip-
pocampal regions besides the CA3 might be involved in sequence readout,
see Lisman, 1999.) Each of the 9 pyramidal cells in the decoder represents
one of the locations from A to I. The first cell is synaptically connected to
pyramidal cells 1 to 5 (representation A) of the CA3 network. The next cell
is synaptically connected to cells 6 to 10 (representation B), and so on. Cells
in the decoder fire if they receive sufficiently strong synaptic excitation co-
inciding with a depolarizing theta drive. The only parameter varied in the
numerical simulations, Figure 2B, is the phase of the theta drive. The top
panel represents the phase-coded input from the hippocampus. In panel 1,
the phase decoder receives a theta input shifted 125 degrees from the hip-
pocampal theta rhythm. The result is that representations from the early part
of the hippocampal theta cycle activate cells in the decoder. For instance,
the decoder cell representing location A fires shortly after representation
A activates in the CA3 network. By this principle, information about cur-
rent location is transferred to the decoder. If the decoder receives a theta
input that is in phase with the hippocampal theta drive (panel 2), upcoming
nearby locations about two to three theta cycles ahead in time (about 8–13 cm
ahead of the rat with running speed of 30 cm/s) are activated in the decoder.
In panel 3, the decoder receives a theta input shifted 270 degrees from the
hippocampus. In this case, firing patterns from the very late phase of the
hippocampus are transferred. Hence, upcoming distant locations about four
theta cycles ahead in time (about 17–18 cm ahead of the rat with a running
speed of 30 cm/s) are represented in the decoder. If the theta input to the
decoder is in antiphase (panel 4) with the hippocampal CA3 input, the cells
in the decoder will not fire; no information is transferred. Nor will cells in
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Figure 3: Qualitatively different information is decoded depending on the theta
phase lag (angle in the circle map) between the hippocampus and the decoding
network.

the decoder fire if the amplitude of the theta input is zero (data not shown).
Notice that in panels 2 and 3, the phase decoder makes a few errors. For
instance, the cell representing D, panel 2, fires twice. These errors are due to
the noise added in the simulations and would be of less importance if the
decoding network included more cells per representation. When adjusting
the parameters of the neurons in the decoding network, it is crucial that the
sum of the synaptic input currents and the maximum current of the theta
input is strong enough to bring the pyramidal cells just above firing thresh-
old. When this condition is fulfilled, the model is relatively insensitive to the
ratio of the synaptic current compared to the theta current. For instance, the
results in Figure 2B are reproduced when the synaptic input conductance
is decreased from g′

AMPA = 0.006 mS/cm2 to 0.0034 mS/cm2 while the theta
current is increased from I′! = 0.18 µA/cm2 to 0.27 µA/cm2.

The results of the simulations are summarized in the circle map (see
Figure 3). The phase values in degrees denote the phase lag between the
hippocampal network and the phase decoder. At phase lags of 125 degrees,
current locations are decoded. As the phase difference is decreased, more
and more distant locations are represented in the decoder. At phase lags
of 270 degrees (= −90 degrees), the most distant locations are represented.
At the portion where the theta drives are in antiphase (broken line), no
information is transferred.
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4 Discussion

I have proposed a simple but biophysically plausible mechanism for infor-
mation transfer between rhythmically coupled networks. The mechanism
was tested on a model for the CA3 region of the hippocampus, which can
produce phase-coded spatial information by repeated readout of spatiotem-
poral firing patterns. By varying the phase of the rhythmic theta drive to the
network receiving the phase-coded firing pattern, qualitatively different in-
formation is transferred. The phase difference determines if representations
of the current location or predicted upcoming representations are transfered
to the decoder. Information transfer is blocked if the theta inputs to the two
networks are in antiphase. A network receiving the hippocampal firing
pattern, but not the theta input, would only be able to decipher the firing
rates and extract less detailed information. Hence, the rhythmic coupling
is computationally advantageous since it allows transfer and decoding of
phase-coded representations.

Which firing properties would be expected of the cells in regions perform-
ing the phase decoding of the hippocampal firing patterns? The summed
activity of a large number of decoding cells, measured by field recordings,
for instance, would produce a rhythmic theta signal. This signal would be
coherent but not necessarily in phase with the hippocampal theta rhythm.
The firing of the individual cells would correlate with the theta rhythm but
not show phase precession since the cells in the decoder fire at a fixed phase
with respect to the theta rhythm (see Figure 2B). Like the firing of place cells,
the firing of the decoding cells would be correlated with the position of the
rat. However, the spatial extent of the place fields would be five to seven
times smaller compared to the place fields of the hippocampal place cells
(see Figure 2B).

What brain areas could possibly make use of the hippocampal phase
code? One candidate is the entorhinal cortex. This structure has abundant
connections both to and from the hippocampal areas through the perforant
path. The firing of some entorhinal cells is strongly modulated by a theta
rhythm, possibly paced by the medial septum. Recently the existence of
an entorhinal theta generator relatively independent of the hippocampal
CA3 theta generator was established (Kocsis, Bragin, & Buzsaki, 1999). The
phase relationship between the two generators was not reported. The firing
of entorhinal cells is correlated with the location of the rat. Contradicting
the predictions of the model, the entorhinal place fields are larger than hip-
pocampal place fields (Barnes, McNaughton, Mizumori, Leonard, & Lin,
1990). However, one cannot exclude the possibility that entorhinal place
cells with small fields do exist but have not yet been identified. Another
possibility is that the phase-coded information passes through the entorhi-
nal cortex to the cingulate cortex. In this area, cells that fire rhythmically at
the theta frequency have been identified in both urethane-anesthetized rats
(Holsheimer, 1982) and freely moving rats (Borst, Leung, & MacFabe, 1987).
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In an in vivo study, the activity of some cingulate cells was shown to be
coherent with the hippocampal theta rhythm (Holsheimer, 1982). No con-
sistent phase lag between pairs of coherent cells in the hippocampus and the
cingulate cortex was found. As for the hippocampus, the theta activity of the
cingulate cortex is thought to be modulated by input from the medial sep-
tum (Bland & Oddie, 1998). Interestingly, one study demonstrated cases in
which the cingulate theta rhythm persists, whereas the hippocampal theta
rhythm is abolished following lesions of the medial septum (Borst et al.,
1987). Also, the cingulate cortex is well connected to many cortical areas
(Vogt & Miller, 1983). Thus, both the entorhinal and the cingulate cortex are
candidates for networks that can use the hippocampal phase code. A recent
study in which the firing of prefrontal cortical neurons was phase-locked
to the hippocampal theta rhythm opens the possibility that the prefrontal
cortex makes use of the phase code (Siapas, Lee, Lubenov, & Wilson, 2000).
Further research is required to characterize the prefrontal cells with respect
to the rat’s position and phase precession.

The regions reading the hippocampal phase code can work according to
at least two different principles, as illustrated in Figure 4. According to the
first principle, different regions of the phase decoder receive theta inputs
at different phases. An example is shown in Figure 4A. The left-hand part
of the phase decoder receives a theta input at 125 degrees phase relative to
that of the hippocampus, corresponding to panel 1 in Figure 2B. The activity
in this region will represent information about the current location of the
rat. The right-most region of the phase decoder receives a theta input at 270
degrees, corresponding to panel 3 of Figure 2B. This region represents up-
coming distant locations. By this principle, phase-coded firing patterns are
spatially segregated into different regions. The maximum number of regions
required to represent the degrees of predictions is determined by the phase
resolution of the hippocampal code. Since the theta phase of firing advances
about one gamma cycle per theta cycle, it is the number of gamma cycles per
theta cycle that determines the degrees of predictions. Thus, a maximum of
about 5 to 10 subregions in the decoder is sufficient for extracting the com-
plete information of the phase code. The proposed scheme requires that
theta inputs with different phases are available at different subregions of
the decoder. The septum could potentially provide drives at different theta
phases since different cells in the septum fire at different phases of the theta
rhythm (Brazhnik & Fox, 1997; King, Recce, & O’Keefe, 1998). Thus, the
proposed mechanism provides a purpose for septal cells’ firing at different
theta phases, a finding that is paradoxical if one considers that the only role
of the septum is to pace the hippocampal theta rhythm. Interestingly, cells in
the supramammillary nucleus have also been found to fire a theta frequency.
Like the cells in the septum, the individual neurons have different preferred
phases with respect to the hippocampal theta rhythm (Kocsis & Vertes, 1997).
This suggests that the supramammillary nucleus and structures to which it
projects could be involved in reading the hippocampal phase code.
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Figure 4: Two alternative principles of transfer of phase-decoded information
between oscillatory networks. (A) Different regions in the phase decoder receive
the theta drive at different phases. This allows the phase decoder to extract
qualitatively different information simultaneously. The left-hand part of the
phase decoder extracts representations corresponding to current location, and
the right-hand part representations of upcoming distant locations. (B) The phase
decoder receives the hippocampal phase-coded information and the theta drive
from the septum. The phase of the theta input is adjustable and determines if the
decoder is extracting representations of either current or predicted upcoming
locations.
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Another possibility is that the phase relationship between the hippocam-
pus and the phase decoder changes dynamically (see Figure 4B). This mech-
anism requires about 5 to 10 times fewer cells than the previously proposed
mechanism. When the rat is in a situation where predictions are important,
for instance, navigating in a complicated but well-learned maze, the phase
difference might be 270 degrees, corresponding to panel 3 of Figure 2B. If the
rat is in a situation where no predictions are possible, for instance, foraging
in an unknown environment, the phase difference might be 125 degrees,
corresponding to panel 1 of Figure 2B. By this principle, qualitatively dif-
ferent information is transferred depending on the relative phase of theta
input to the decoder. How can the phase relationship between the hip-
pocampus and the decoder change dynamically? Again, the cells firing at
different theta phases in the septum provide a possible solution: the drive
from septal cells firing at a particular phase could be weighted according to
the situation. The model proposed in Figure 4A requires more cells than the
one in Figure 4B. Clearly, more experimental work is needed to investigate
the phase relation between the hippocampus and the regions potentially
performing the phase decoding in order to distinguish between the two
mechanisms.

The proposed model for decoding is quite sensitive to the level of ex-
citability; it is important that the sum of the synaptic input current and the
current from the theta input are strong enough to bring the membrane poten-
tial of the cells just above threshold. However, the model is quite robust with
respect to the ratio of theta current to synaptic current. Experimental work
has revealed several physiological mechanisms promoting homeostatic sta-
bility of neuronal excitability (Bear, 1995; Desai, Rutherford, & Turrigiano,
1999; Turrigiano, 1999). Through these mechanisms, excitability is regulated
by changes in intrinsic properties of the neurons and adjustments of exci-
tatory and inhibitory synaptic inputs. I propose that similar physiological
feedback mechanisms are responsible for adjusting the parameters to rea-
sonable levels in the phase-decoding network. Further research is required
to explore how such feedback mechanisms can help to adjust the network
parameters to a robust regime.

Another class of models addressing transfer of information encoded by
spike timing relative to an ongoing rhythm has been proposed by Ahissar
(1998). This framework deals primarily with the decoding of the spike trains
from single cells, not the decoding of a spatiotemporal code from an en-
semble of cells. In the models, an oscillating network converts temporally
encoded information to a rate code. The frequency of the oscillating decoder
(the rate-controlled oscillator) is determined by the mean frequency of the
incoming spike train. The decoding network compares the timing expec-
tation defined according to the rate-controlled oscillator with the timing
of an incoming spike. The difference in timing (phase information) is then
converted to a rate code. This decoding scheme has been shown to be con-
sistent with several experimental observations in the somatosensory cortex
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(Ahissar et al., 1997, 2000). Although this framework has several compo-
nents in common with the model proposed in this article, such as phase
detection, it does not apply directly for reading the hippocampal phase
code. The main reason is that due to the theta phase precession, the inter-
spike intervals of place cells are shorter than a theta period (see Figure 2A).
Thus, it is not possible to set the phase and frequency for the rate-controlled
oscillator by the spike trains from individual place cells. However, it is pos-
sible that the decoding scheme proposed by Ahissar (1998) could apply to
the hippocampal phase code if it was modified such that the frequency and
phase of the rate-controlled oscillator were set according to the mean firing
rate of the ensemble of place cells.

The theoretical framework developed in this article adds significance to
the importance of oscillatory brain activity and the idea of phase coding. The
principles of phase coding and information transfer between oscillatory net-
works can be generalized beyond the rat hippocampus. It has recently been
proposed that the hippocampal sequence readout within theta cycles serves
as a general mechanism for the encoding and recall of episodic memory in
humans as well as in animals (Lisman, 1999). New methods are being devel-
oped for the purpose of localizing coherent oscillatory sources from human
data recorded by magnetoencephalography and electroencephalography
(Gross et al., 2001). Future research applying such approaches, as well as
intracranial recordings in which single unit activity is related to the ongoing
rhythmic activity, would be needed in order to test the ideas on information
transfer between rhythmically coupled networks.
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