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Levels of Modeling: Biophysical Models

Adapted from Herz et al., Science. 2006 Oct 6;314(5796):80-5. 

Hodgkin-Huxley model

Two-dimensional models
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Levels of modeling: Information coding

Adapted from Herz et al., Science. 2006 Oct 6;314(5796):80-5. 

Integrate-and-fire models

Spike Response Models
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Application of information coding approaches
Biological Goal Computation Biophysical 

Mechanism
Level Experimental 

systems

Motion 
anticipation

Linear filtering with 
negative feedback

Adaptation of neuronal 
gain

4 Salamander and 
rabbit retinal 
ganglion cells

Motion 
detection

Logical AND or AND-
NOT comparisons of 
temporal shifted info

Coincidence detection 
of one lagged and on 
nonlagged spike

4 Peripheral neurons 
in the fly visual 
system

Intensity-
invariant 
recognition of 
patterns

Separation of pattern 
identity and intensity; 
compare to stored 
template

Transformation of local 
stimulus to spike time; 
coincidence detection

1,4 Insect and 
vertebrate olfactory 
neurons

Redundancy 
reduction

Subtraction of local 
signal minus 
background signal

Dendritic summation 4 Center-surround 
receptive fields in 
the visual system

Efficient coding 
in variable 
environment

Modification of 
turning curve to track 
time-varying stimulus 
ensemble

Adaptation of single-
cell input-output 
function

3,4,5 Motion-sensitive H1 
neuron in the fly 
visual system

Adapted from Herz et al., Science. 2006 Oct 6;314(5796):80-5. 
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Variability in neuronal firing

Adapted from Herz et al., Science. 2006 Oct 6;314(5796):80-5. 

Post-Stimulus Time 
Histogram (PSTH)

Inter-Spike 
Interval (ISI)
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Neuronal firing patterns (primate PFC)

Adapted from Compte et. al. J Neurophysiol 90: 3441–3454, 2003.

Poisson

Refractory

Bursting

63%

26%

14%

PSTH (s) ISI length (ms) frequency (Hz)
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Modeling variability in firing patterns 

Softky + Koch,. J Neuroscience 13(1): 334-350, 1993.
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Compartmental models of variability to not match 
experimental results

Adapted from: Softky + Koch,. J Neuroscience 13(1): 334-350, 1993.

Compartmental model with realistic parameters
Compartmental model with “Barely Plausible” parameters 
(all synapses on apical dendrite 60pm from soma, fast and strong EPSP)

Poisson firing rate
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Homogeneous Poisson process
• Simple random process with no memory: every event is independent

of any previous event

• Assume an average cell firing rate r
– The firing rate r is the probability of firing a spike in an interval Δt around 

t, as Δt→0
– So, the probability of a single spike occurring in that interval is rΔt

• Since all spikes are independent of each other, we can express the 
probability density solely as a function of the number of spikes
during an interval

• Take an interval T and divide it into M bins of size Δt: 

• Choose Δt so that we never get 2 spikes in a single bin

M
Tt =Δ
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Homogeneous Poisson process (cont.)
• How do we determine PT(n) = Probability of exactly n spikes 

occurring during the interval T ?

• PT(n) is the product of:
– The probability of generating n spikes within M bins

– The probability of not generating spikes in the remaining bins

– The number of ways in which n spikes can occur in M bins
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Determining PT(n)

• Since we chose Δt to ensure at most one spike per bin, the 
probability of generating n spikes is equivalent to the probability that 
n of the M bins contain a spike

• Spikes are independent
– Probability of spike in 1 bin is rΔt

– So, probability of generating a spike in each of n bins is ntr )( Δ

• PT(n) is the product of:
– The probability of generating n spikes within M bins
– The probability of not generating spikes in the remaining bins
– The number of ways in which n spikes can occur in M bins
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Determining PT(n) (cont.)

• The probability of not having a spike in a given bin is

• The probability of having the remaining M-n bins without any spikes 
in them is:

nMtr −Δ− )1(

trΔ−1

• PT(n) is the product of:
– The probability of generating n spikes within M bins
– The probability of not generating spikes in the remaining bins
– The number of ways in which n spikes can occur in M bins
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Determining PT(n) (cont.)

• The number of ways of putting n spikes into M bins is given by the 
binomial coefficient:

!)!(
!

nnM
M
−

• PT(n) is the product of:
– The probability of generating n spikes within M bins
– The probability of not generating spikes in the remaining bins
– The number of ways in which n spikes can occur in M bins
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Determining PT(n) (cont.)
• Hence, the probability of n spikes in time T is:

• For large M and small n (i.e. Low firing rates), approximate:

and

• So,
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Determining PT(n) (cont.)
• Let: 

and note that by definition

• So:

• Substitute into:
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Determining PT(n) (cont.)

• The result is the Poisson distribution:

Applying this to Interspike Intervals 

rT
n

T e
n

rTnP −=
!
)()(

Constant input, stationary 
interval distribution: P0(t)
represented by the 
interspike histogram

Time-varying input, input-
dependent interval distribution:   
represents probability density that 
next spike occurs after an interval

)̂|( ttPI

tt ˆ−
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• The probability that a spike occurs between time t1 and t2 is just the 
integration of the probability density, given by:

• The survivor function is the probability that a spike doesn’t occur in that 
interval

– For a spike at time the survivor function is defined as:

tdttPttS
t

t
II ′′−= ∫ )ˆ|(1)ˆ|(

ˆ

dtttP
t

t
I )ˆ|(

2
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Survivor function
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)ˆ|()ˆ|()ˆ|( ttS
dt
dttStt III −=ρ

Hazard function
• The hazard function is the probability of firing at point t, given we haven’t 

fired yet

• Defined as the rate of decay of the survivor function:

)ˆ|(

)ˆ|(
)ˆ|(

ttS

ttS
dt
d

tt
I

I

I

−
=ρ

Probability density
Probability of not firing 
up until point t

Probability of firing at 
point t, given we 
haven’t fired yet
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Hazard function
• How do we interpret this? 

– The hazard is a measure of the likelihood of firing given no spike 
occurred up to time t

– Example: reduced hazard at times close to the previous firing is
characteristics of a refractory period 

– Example: increasing hazard implies that the likelihood of firing increases 
the longer it has been since the last spike
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Hazard function for a Poisson Process
For the Poisson distribution:

The probability of not firing a spike (n=0) for a period  t  is  e-rt, which is 
the survivor function

So the hazard function for the Poisson process is simply the (constant) 
firing rate:
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)()ˆ|( absI trtt Δ−Θ⋅=ρ

absΔ

Example: Poisson firing 
rate, with and without a 
refractory period
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Note that this formalization 
allows us to derive all of 
these functions if one can be 
acquired empirically 
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Functional relevance of noisy firing rates

Rose et. al., J Neurophysiol 30: 769-793, 1967.

Auditory nerve response 
to pure tone stimulation, in 
squirrel monkey

ISI shows that neurons do 
not fire during every 
period of the stimulus, but 
miss periods (with an 
exponentially decreasing 
likelihood)
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Noisy firing rates improve auditory thresholds

Threshold to 
produce a spike 
train without 
noise is about 
0.041.

With a small 
amount of noise 
(s.d.=0.12) the 
threshold to 
spike is reduced 
to about 0.025
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Noise and firing rates
• If the probability density is a function of noise, the distribution of 

inter-spike intervals will change

Noisy threshold: define our 
hazard as a function of the 
distance from threshold

])ˆ|([)ˆ|( υρ −= ttuftt

The function f defines the 
“escape rate” that causes 
“jitter” in the firing threshold
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Noisy thresholds
• Consider our leaky integrate-and-fire neuron:

• Assuming a linear escape rate:

If we let                and               then for 
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( )[ ])ˆ(exp1)ˆ( ttrtt −−−=− λρ

In mammalian auditory neurons, the 
hazard function increases, after a 
refractory period, to a constant level
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Highly reproducible firing patterns with noisy input

Mainen, Z. F. and Sejnowski, T. J. (1995). Science, 268:1503-1506. 

(rat neocortex)
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Noisy inputs leads to increased reliability and precision

Mainen, Z. F. and Sejnowski, T. J. (1995). Science, 268:1503-1506. 

Reliability: Fraction of spikes occurring in the peri-stimulus region

Precision: S.D. of spike times within the event
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Gaussian response of IIF neuron

Langevin equation)()()(
0 tI
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Consider a Gaussian additive noise source      with probability densityξ

0)( =tξ
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Understanding neuronal responses to stimuli
• We’d like to be able to characterize the properties of the neuronal

firing patterns using well-understood statistical methods
– Allows us to examine how different stimuli change the behavior

– Allows us to predict a response to new stimuli

• In order to do this, we must
– Pick an encoding (e.g. firing rate, interval distribution, etc.)

– Characterize it appropriately to derive characteristic properties
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Motion Anticipation: Single neuron response to stimulus

Berry et al., Nature, 3/25/99, Vol. 398 Issue 6725, p334
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Population response to flashing and moving bars

Berry et al., Nature, 3/25/99, Vol. 398 Issue 6725, p334

After a latency of 40ms, neural activity 
increases to a peak at 60ms. Profile is 
centered on location of the flashing bar, and 
has a width at half-maximum that is ~the 
size of the receptive field for these neurons

For a moving bar, the neural activity leads 
the center of the bar by about 100µm.
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