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Population decoding
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Directional sensitivity
• Motor neurons show a directional sensitivity

– Data show a tuning curve of
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Vector coding
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Response of neuron to non-preferred 
direction: projection of stimulus direction on 
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Vector coding
• If the average firing rate for the neuron is coded by 

• Then
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Tuning curves are not precise

Tuning curve gives 
the response of a 
single neuron as a 
stimulus-dependent 
firing rate
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So, how does this code for precise position?
• Every neuron has a preferred direction, but…

– Tuning curves are broad

– Neuronal responses are noisy

– How do we determine the precise direction that is encoded?

• How about the average response of a population of neurons?

Tovey et al., PLoS Biology, 4(4): 639-646, 2006
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Vector (de)coding
• If the single-neuron response tuning curve is represented as:

• Then if we assume that for a given population of neurons the 
preferred directions point uniformly in all directions, then for a large 
number of neurons N 

• Here, r is the instantaneous firing rate
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Vector (de)coding
• The average population vector (over trials), given              will be:

• Note that this assumes:
– A large number of neurons

– Preferred-direction vectors that point randomly in all directions with 
equal probability

– Then,             approximates the actual stimulus direction 
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The neuron’s view

[ ]rsP | How do we find an 
optimal s?

[ ] [ ] [ ]
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sPsrPrsP || =

Probability of 
stimulus (the prior)

Probability of 
response r

Conditional firing rate
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Optimizing our estimate of s 
• Using the homogeneous Poisson model to describe the variability of our 

firing rate
– If the firing rate ra is determined by counting na spikes in time T, and the average 

firing rate is 

– Assume the neuron’s firing statistics are described by a Poisson process – then 
ra is distributed with mean of fa (s)

– The likelihood of this neuron firing in response to the stimulus s is                :
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Optimizing sest (cont.)
• If each neuron fires independently, the firing-rate probability for the 

population is

• This is easier to work with as a log likelihood:
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Optimizing sest (cont.)
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equally likely over the 
population, sums to 
constant

Does not assume any particular tuning curve
Does assume Poisson firing
Assumes neurons are statistically independent

Clearly our tuning curve should match our data – however, often it is 
acceptable to take a tuning curve that is Gaussian:

In which case                  will be independent of s

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

2

max 2
1exp)(

a

a
a

ssrsf
σ

∑
=

N

a
a sf

1

)(



2/27/2007 BME 665/565 14

Example: directionally tuned neurons in MT

[ ] ∑
=

−=
N

a
ii ssnsrP

1
)cos(|log κ

Bell-shaped tuning functions
Kappa  determines the tuning bandwidth
Cells increase their firing rate for favored directions roughly in proportion to coherence
Their firing statistics are approximately Poisson

Jazayeri et al., Nature Neuroscience 9(5), 690-696 (2006)



2/27/2007 BME 665/565 15

Discrimination behavior:
Contributions of individual neurons to Log Likelihood
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Jazayeri et al., Nature Neuroscience 9(5), 690-696 (2006)

Neurons with similar weights in each 
of the log likelihoods cancel and do 
not contribute strongly to the 
discrimination, whereas neurons with 
more dissimilar weights in the two log 
likelihoods have a stronger influence 
on the model’s discrimination 
behavior.
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The neuron’s view

[ ]rsP | How do we find an 
optimal s?
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response r

Conditional firing rate
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Optimizing sest (cont.)
• If we further assume that P[s] is independent of s, then we can find a 

stimulus value sML that maximizes our conditional probability 
stimulus:

• The Maximum Likelihood estimated stimulus maximizes:
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Optimizing sest (cont.)
• Remember:

• So,

• To find the optimum with respect to the stimulus, we set the 
derivative with respect to s to zero
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Optimizing sest (cont.)

• If P[s] is independent of s, then setting the derivative with respect to s to 0 
gives us:

• For our Gaussian tuning curve
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Example: Hippocampal place cells

Brown et al., Nature Neuroscience 7, 456 - 461 (2004)
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What if P[s] is not independent of s?
• Use the same approach, with some estimate of the distribution of

the probability of the prior (i.e. the stimulus) 

• By setting:
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Maximum a posteriori (MAP) inference
• Using our friend the Gaussian to represent the distribution of the 

prior (with mean sprior and variance σprior) we can again solve for 
sMAP:
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Maximum likelihood estimation

Joint PSTH

Cross-correlogram

Brown et al., Nature Neuroscience 7, 456 - 461 (2004)

Cross-coherence
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How good is our estimate?
• We can evaluate how good our estimate is using two measures:

– Bias = difference between the average estimated response (over trials) 
and the true stimulus

– Variance = how much the estimate varies about its mean value
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