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Dynamical system models
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2nd Order (Linear) Dynamical Systems

• Can be written as:
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• Equilibrium points occur when the temporal derivative is 0, which 
defines equilibrium solutions

• A trajectory is the time course of the system given a particular set of 
initial conditions

• We can characterize a system by the behavior of its trajectories in 
the vicinity of the equilibrium points

2nd Order Dynamical Systems (cont.)
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• We can plot trajectories in state space (also called the phase plane) 
in which the variables of our equations define the axis

• Then, the plots of dx/dt=0 and dy/dt=0 are called nullclines, and their 
intersection point represents the equilibrium state of the system

Stability and state space
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• The equilibrium point is asymptotically stable if all trajectories 
starting within a region containing the equilibrium point decay 
exponentially towards that point

• The equilibrium point is unstable if at least one trajectory beginning 
in a region containing the point leaves the region permanently

• The equilibrium is (neutrally) stable if trajectories remain nearby 

• The behavior of trajectories can be determined by the eigenvalues
of the system

Stability and state space (cont.)
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2nd Order Dynamical Systems (cont.)
• But, how do we find the eigenvalues?

• We can transform the system steady state to the origin without 
changing the dynamics by setting

• So that
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2nd Order Dynamical Systems (cont.)
• Now, substitute a vector of exponentials for X with arbitrary (to be 

determined) coefficients c and d:

• So,
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The λ’s are the eigenvalues of 
the system, and the v’s are 
the eigenvectors.
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2nd Order Dynamical Systems (cont.)

has a non-trivial solution only if

does not have an inverse – which means the determinant 
vanishes

The determinant is simply a quadratic polynomial which is the 
characteristic equation of the system
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2nd Order Dynamical Systems (cont.)
The solutions of the characteristic equation are called eigenvalues of A

If the eigenvalues are not equal (λ1≠ λ2) then the solution of our original 
system

is:

So, we only need to determine the c’s and d’s (the eigenvectors) to 
determine the solution for the system of equations
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2nd Order Dynamical Systems (cont.)
To find the solution for X (i.e. find the c’s and d’s), we substitute in our 
eigenvalue(s)

Note: we must know the initial conditions to fully determine the c’s and 
d’s
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Back to state space …

X

y

0=dt
dx

0=dt
dy

Eigenvalues are a 
complex conjugate pair: 
equilibrium point is a 
spiral point.

If the real part of the 
eigenvalues are 
negative, the point is 
asymptotically stable

Otherwise, it’s unstable
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Back to state space …

X

y

0=dt
dx

0=dt
dy

Eigenvalues are both 
real and have the same 
sign: equilibrium point is 
a node.

If the eigenvalues are 
negative, the point is 
asymptotically stable

Otherwise, it’s unstable
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Back to state space …

X

y

0=dt
dx

0=dt
dy

Eigenvalues are both 
real and have different 
signs: equilibrium point is 
a saddle point.

Saddle points are always 
unstable
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Back to state space …

X

y

0=dt
dx

0=dt
dy

Eigenvalues are purely 
imaginary: equilibrium 
point is a center.

Centers are neutrally 
stable, and the trajectory 
around the equilibrium 
point will be strictly 
periodic oscillations
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Non-linear Systems
• What about non-linear systems?

• We can solve for equilibrium points, but in this case we have non-
linear functions, so how do we determine the eigenvalues?

…use the linear terms of the Taylor series expansion around the 
equilibrium points 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

∂
∂

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
w
u

w
G

u
G

w
F

u
F

w
u

dt
d

eqeq

eqeq

),(),( wuG
dt
dwwuF

dt
du

==

Matrix of first derivatives: 
Jacobian matrix



05/13/2004 BME 665/565 19

Example: Fitzhugh-Nugamo Model
• The FitzHugh-Nagumo model is a two-dimensional simplification of 

the Hodgkin-Huxley model of spike generation in squid giant axons 

• The model captures the mathematical properties of excitation and 
propagation from the electrochemical properties of sodium and 
potassium ion flow

• It involves only three parameters, which allow it to be easily 
visualized using phase plane analysis:
– V is a voltage-like variable having cubic nonlinearity that allows 

regenerative self-excitation via a positive feedback (membrane 
potential) 

– R is a recovery variable having a linear dynamics that provides a
slower negative feedback

– I is the magnitude of stimulus current
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Fitzhugh-Nugamo Model
• The model is sometimes written in the abstract form 

where  F(V) is a polynomial of third degree, and            a,b,c are 
constant parameters 

• One formulation for it is:
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Solution for Fitzhugh-Nugamo
• Solve for equilibrium points

• Root of the equilibrium point are found (using Matlab roots) by 
solving:

• For no input (I=0) we find V = -1.5, and therefore at R = -0.375

• These values can be substituted into our Jacobian to determine the 
eigenvalues:
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Stable equilibrium

Eigenvalues with 0 input are λ = -5.65, -8.85
Stable node
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Spiking Behavior of Fitzhugh-Nagamo

Example: Input 0.9 for 10 msec
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Post-inhibitory rebound

• As the stimulus  becomes negative (hyperpolarization), the resting 
state shifts to the left

• When the system is released from hyperpolarization, the trajectory 
starts from a point far below the resting state, makes a large-amplitude 
excursion, i.e., fires a transient spike, and then returns to the resting 
state.
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Another example: Wilson-Cowan equations
• The Wilson-Cowan equations describe the interaction between 

excitatory and inhibitory neurons:
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Wilson-Cowan example (cont.)

Iext = 20
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Limit cycles
• An oscillatory trajectory is a limit cycle if all trajectories within a small 

region enclosing the oscillatory trajectory are spirals
– If neighboring trajectories spiral towards the oscillatory trajectory, then 

the limit cycle is asymptotically stable

– If they spiral away, the limit cycle is unstable

• Poincaré-Bendixon theorem:
– Suppose there is an annular region that contains no equilibrium points 

and for which all trajectories that cross the boundary of the annulus 
enter it

– Then, the annulus must contain at least one asymptotically stable limit 
cycle
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Wilson-Cowan example (revisited)
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Phase Plane analysis for systems:
Decision response in the visual system

Lo and Wang, Nature Neuroscience 9, 956 - 963 (2006)
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Pathway response to stimulus

Lo and Wang, Nature Neuroscience 9, 956 - 963 (2006)
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Superior colliculus: thresholded response to input

Lo and Wang, Nature Neuroscience 9, 956 - 963 (2006)

Interactions between 
excitatory and inhibitory 
neurons in the superior 
colliculus lead to 
thresholded burst 
generation.
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Contributions to the threshold mechanism: Cxe-SC or Cxe-CD 

Lo and Wang, Nature Neuroscience 9, 956 - 963 (2006)

• An increase in the efficacy of the Cxe-SC synapses results in only a small increase in the 
threshold for firing

• However, an increase in the efficacy of the SNr-SC synapses leads to a large change in 
the threshold

implies that the Cxe basal ganglia SC pathway is better able to tune this 
threshold


