Dynamical System Analysis: Phase Plane Analysis

BME665/565

Central Pattern Generators

Lampreys

> Animal Gaits

Dynamical system models

$$
\begin{aligned}
\dot{x}_{i} & =a \cdot\left[-x_{i}+\frac{1}{1+\exp \left(-f_{c i}-b y_{i}+b z_{i}\right)}\right] \quad \text { for } i=1,2,3,4 \\
\dot{y}_{i} & =x_{i}-p y_{i} \\
\dot{z}_{i} & =x_{i}-q z_{i} \\
f_{c i} & =f \cdot\left[1+k_{1} \sin \left(k_{2} t\right)+\sum_{j=1}^{4} \lambda_{j i} \cdot x_{j}\right]
\end{aligned}
$$

$2^{\text {nd }}$ Order (Linear) Dynamical Systems

$$
\frac{d x}{d t}=a_{1} x+a_{2} y+b_{1} \quad \frac{d y}{d t}=a_{3} x+a_{4} y+b_{2}
$$

- Can be written as:

$$
\begin{gathered}
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)\binom{x}{y}+\binom{b_{1}}{b_{2}} \\
\frac{d \vec{X}}{d t}=\vec{A} \vec{X}+\vec{B}
\end{gathered}
$$

2nd Order Dynamical Systems (cont.)

- Equilibrium points occur when the temporal derivative is 0 , which defines equilibrium solutions $\vec{X}_{e q}$

$$
\frac{d \vec{X}}{d t}=\vec{A} \vec{X}+\vec{B}=0 \longrightarrow \vec{X}_{e q}=-\vec{A}^{-1} \vec{B}
$$

- A trajectory is the time course of the system given a particular set of initial conditions
- We can characterize a system by the behavior of its trajectories in the vicinity of the equilibrium points

Stability and state space

- We can plot trajectories in state space (also called the phase plane) in which the variables of our equations define the axis
- Then, the plots of $d x / d t=0$ and $d y / d t=0$ are called nullclines, and their intersection point represents the equilibrium state of the system

$$
\begin{aligned}
& \frac{d x}{d t}=a_{1} x+a_{2} y+b_{1} \\
& \frac{d y}{d t}=a_{3} x+a_{4} y+b_{2}
\end{aligned}
$$

Stability and state space (cont.)

- The equilibrium point is asymptotically stable if all trajectories starting within a region containing the equilibrium point decay exponentially towards that point
- The equilibrium point is unstable if at least one trajectory beginning in a region containing the point leaves the region permanently
- The equilibrium is (neutrally) stable if trajectories remain nearby
- The behavior of trajectories can be determined by the eigenvalues of the system

2nd Order Dynamical Systems (cont.)

- But, how do we find the eigenvalues?

$$
\Longrightarrow \frac{d \vec{X}}{d t}=\vec{A} \vec{X}+\vec{B}=0
$$

- We can transform the system steady state to the origin without changing the dynamics by setting

$$
\vec{X}^{\prime}=\vec{X}-\vec{X}_{e q}
$$

- So that

$$
\frac{d \vec{X}^{\prime}}{d t}=\vec{A} \vec{X}^{\prime}
$$

2nd Order Dynamical Systems (cont.)

- Now, substitute a vector of exponentials for X with arbitrary (to be determined) coefficients c and d:

$$
\vec{X}^{\prime}=\binom{c e^{\lambda t}}{d e^{\lambda t}}=\vec{v} e^{\lambda t} \quad \begin{aligned}
& \text { The } \lambda^{\prime} \text { 's are the eigenvalues of } \\
& \text { the system, and the } v \text { 's are } \\
& \text { the eigenvectors. }
\end{aligned}
$$

- So,

$$
\frac{d \vec{X}^{\prime}}{d t}=\underline{\vec{A} \vec{X}^{\prime}=\lambda \vec{X}^{\prime}} \longrightarrow\{\vec{A}-\lambda \vec{I}\} \vec{X}^{\prime}=\binom{0}{0}
$$

$$
\frac{d \vec{X}^{\prime}}{d t}=\vec{A} \vec{X}^{\prime}
$$

$2^{\text {nd }}$ Order Dynamical Systems (cont.)

$$
\{\vec{A}-\lambda \vec{I}\} \vec{X}^{\prime}=\binom{0}{0}
$$

has a non-trivial solution only if $\quad\{\vec{A}-\lambda \vec{I}\}$
does not have an inverse - which means the determinant vanishes

$$
|\vec{A}-\lambda \vec{I}|=0
$$

The determinant is simply a quadratic polynomial which is the characteristic equation of the system

$$
\left(\begin{array}{cc}
a_{1}-\lambda & a_{2} \\
a_{3} & a_{4}-\lambda
\end{array}\right)=0 \quad \text { remember this? } \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$2^{\text {nd }}$ Order Dynamical Systems (cont.)

The solutions of the characteristic equation are called eigenvalues of A If the eigenvalues are not equal $\left(\lambda_{1} \neq \lambda_{2}\right)$ then the solution of our original system

$$
\frac{d \vec{X}}{d t}=\vec{A} \vec{X}+\vec{B}
$$

is:

$$
\vec{X}=\binom{c_{1} e^{\lambda_{1} t}}{d_{1} e^{\lambda_{1} t}}+\binom{c_{2} e^{\lambda_{2} t}}{d_{2} e^{\lambda_{2} t}}+\vec{X}_{e q}
$$

So, we only need to determine the c's and d's (the eigenvectors) to determine the solution for the system of equations

$2^{\text {nd }}$ Order Dynamical Systems (cont.)

To find the solution for X (i.e. find the c 's and d's), we substitute in our eigenvalue(s)

$$
\begin{aligned}
\lambda \vec{X}^{\prime}=\vec{A} \vec{X}^{\prime} & \lambda_{1}\binom{c_{1} e^{\lambda_{1} t}}{d_{1} e^{\lambda_{1} t}}=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)\binom{c_{1} e^{\lambda_{1} t}}{d_{1} e^{\lambda_{1} t}} \\
& \lambda_{2}\binom{c_{2} e^{\lambda_{2} t}}{d_{2} e^{\lambda_{2} t}}=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)\binom{c_{2} e^{\lambda_{2} t}}{d_{2} e^{\lambda_{2} t}}
\end{aligned}
$$

Note: we must know the initial conditions to fully determine the c's and d's

Back to state space ...

$$
\left(\begin{array}{cc}
a_{1}-\lambda & a_{2} \\
a_{3} & a_{4}-\lambda
\end{array}\right)=0
$$

Eigenvalues are a complex conjugate pair: equilibrium point is a spiral point.

If the real part of the eigenvalues are negative, the point is asymptotically stable

Otherwise, it's unstable

Back to state space ...

$$
\left(\begin{array}{cc}
a_{1}-\lambda & a_{2} \\
a_{3} & a_{4}-\lambda
\end{array}\right)=0
$$

Eigenvalues are both real and have the same sign: equilibrium point is a node.

If the eigenvalues are negative, the point is asymptotically stable

Otherwise, it's unstable

Back to state space ...

$$
\left(\begin{array}{cc}
a_{1}-\lambda & a_{2} \\
a_{3} & a_{4}-\lambda
\end{array}\right)=0
$$

Eigenvalues are both real and have different signs: equilibrium point is a saddle point.

Saddle points are always unstable

Back to state space ...

$$
\left(\begin{array}{cc}
a_{1}-\lambda & a_{2} \\
a_{3} & a_{4}-\lambda
\end{array}\right)=0
$$

Eigenvalues are purely imaginary: equilibrium point is a center.

Centers are neutrally stable, and the trajectory around the equilibrium point will be strictly periodic oscillations

Non-linear Systems

- What about non-linear systems?
- We can solve for equilibrium points, but in this case we have nonlinear functions, so how do we determine the eigenvalues?
...use the linear terms of the Taylor series expansion around the equilibrium points

$$
\frac{d}{d t}\binom{u}{w}=\left(\begin{array}{ll}
\left.\frac{\partial F}{\partial u}\right|_{e q} & \left.\frac{\partial F}{\partial w}\right|_{e q} \\
\left.\frac{\partial G}{\partial u}\right|_{e q} & \left.\frac{\partial G}{\partial w}\right|_{e q}
\end{array}\right)\binom{u}{w} \quad \begin{gathered}
\frac{d u}{d t}=F(u, w) \quad \frac{d w}{d t}=G(u, w) \\
\begin{array}{l}
\text { Matrix of first derivatives: } \\
\text { Jacobian matrix }
\end{array}
\end{gathered}
$$

Example: Fitzhugh-Nugamo Model

- The FitzHugh-Nagumo model is a two-dimensional simplification of the Hodgkin-Huxley model of spike generation in squid giant axons
- The model captures the mathematical properties of excitation and propagation from the electrochemical properties of sodium and potassium ion flow
- It involves only three parameters, which allow it to be easily visualized using phase plane analysis:
- V is a voltage-like variable having cubic nonlinearity that allows regenerative self-excitation via a positive feedback (membrane potential)
- \boldsymbol{R} is a recovery variable having a linear dynamics that provides a slower negative feedback
- I is the magnitude of stimulus current

Fitzhugh-Nugamo Model

- The model is sometimes written in the abstract form

$$
\begin{aligned}
\dot{V} & =\frac{1}{\tau}(f(V)-R+I) \\
\dot{R} & =\frac{1}{\tau_{R}}(a V-b R+c)
\end{aligned}
$$

where $F(V)$ is a polynomial of third degree, and τ, τ_{R}, a, b, c are constant parameters

- One formulation for it is:

$$
\begin{aligned}
\dot{V} & =\frac{1}{0.1}\left(V-V^{3} / 3-R+I\right) \\
\dot{R} & =\frac{1}{1.25}(1.25 V-R+1.5)
\end{aligned}
$$

Solution for Fitzhugh-Nugamo

- Solve for equilibrium points
- Root of the equilibrium point are found (using Matlab roots) by solving:

$$
\begin{aligned}
& R=V-V^{3} / 3+I \\
& R=1.25 V+1.5
\end{aligned}
$$

- For no input ($l=0$) we find $\mathrm{V}=-1.5$, and therefore at $\mathrm{R}=-0.375$
- These values can be substituted into our Jacobian to determine the eigenvalues:

$$
\vec{A}=\left(\begin{array}{cc}
10-10 V^{2}-\lambda & -10 \\
2.5 & -2-\lambda
\end{array}\right)
$$

$$
\begin{aligned}
& \dot{V}=\frac{1}{0.1}\left(V-V^{3} / 3-R+I\right) \\
& \dot{R}=\frac{1}{1.25}(1.25 V-R+1.5)
\end{aligned}
$$

Stable equilibrium

Eigenvalues with 0 input are $\lambda=-5.65,-8.85$
\rightarrow Stable node

Spiking Behavior of Fitzhugh-Nagamo

Example: Input 0.9 for 10 msec

Post-inhibitory rebound

- As the stimulus becomes negative (hyperpolarization), the resting state shifts to the left
- When the system is released from hyperpolarization, the trajectory starts from a point far below the resting state, makes a large-amplitude excursion, i.e., fires a transient spike, and then returns to the resting state.

Another example: Wilson-Cowan equations

- The Wilson-Cowan equations describe the interaction between excitatory and inhibitory neurons:

$$
\begin{aligned}
\tau \frac{d E(x)}{d t} & =-E(x)+g_{E}\left[I^{e x t}+w_{E E} E(x)-w_{I E} I(x)\right] \\
\tau \frac{d I(x)}{d t} & =-I(x)+g_{I}\left[w_{E I} E(x)\right]
\end{aligned}
$$

$$
g(P)=\left\{\begin{array}{cc}
\frac{100 P^{2}}{30^{2}+P^{2}} & \text { for } P \geq 0 \\
0 & \text { for } P<0
\end{array}\right.
$$

Wilson-Cowan example (cont.)

$$
I_{e x t}=20
$$

Limit cycles

- An oscillatory trajectory is a limit cycle if all trajectories within a small region enclosing the oscillatory trajectory are spirals
- If neighboring trajectories spiral towards the oscillatory trajectory, then the limit cycle is asymptotically stable
- If they spiral away, the limit cycle is unstable
- Poincaré-Bendixon theorem:
- Suppose there is an annular region that contains no equilibrium points and for which all trajectories that cross the boundary of the annulus enter it
- Then, the annulus must contain at least one asymptotically stable limit cycle

Wilson-Cowan example (revisited)

Phase Plane analysis for systems: Decision response in the visual system

a

Visual stimulus

C Sensory input

Pathway response to stimulus

Superior colliculus: thresholded response to input

Interactions between excitatory and inhibitory neurons in the superior colliculus lead to thresholded burst generation.

C i

Contributions to the threshold mechanism: Cxe-SC or Cxe-CD

- An increase in the efficacy of the Cxe-SC synapses results in only a small increase in the threshold for firing
- However, an increase in the efficacy of the SNr-SC synapses leads to a large change in the threshold
\rightarrow implies that the Cxe \rightarrow basal ganglia \rightarrow SC pathway is better able to tune this threshold

Lo and Wang, Nature Neuroscience 9, 956-963 (2006)

