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Learning
• Classical conditioning

– Circuits involved in fear conditioning 

– Role of dopamine in conditioning

• Cortical organization
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Phenomenology

UCS: 
Unconditioned 
stimulus: food

UCR: 
Unconditioned 
response: 
salivation

CS: 
Conditioned 
stimulus: bell

CR: 
Conditioned 
response: 
salivation
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Phenomenology: Reinforcement Learning

UCS: 
Unconditioned 
stimulus: food

UCR: 
Unconditioned 
response: 
salivation

CS: 
Conditioned 
stimulus: bell

UCR: 
Conditioned 
response: 
salivation

Stimulus: bell

Reward: food

Expectation: 
salivation
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Reinforcement learning

Auditory 
reinforcement 
on correct 
behavior

Apple juice 
reinforcement 
on correct 
behavior

Tremblay et. al., J Neurophysiol 80: 964-977, 1998; 

Instruction Reward
Trigger

2.5-3.5 1.5
Time 
(sec)
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Reinforcement learning (cont.)

Activity of DA neurons in VTA
Left: neuronal response to reward tied to stimulus
Right: neuronal response of trained neuron when reward is withheld
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Variations of Conditioning 1
Extinction:

• Stimulus (bell) repeatedly shown without reward (food):

conditioned response (salivating) reduced

Partial reinforcement:

• Stimulus only sometimes preceding reward:

conditioned response weaker than in classical case

Blocking (2 stimuli):

• First: stimulus S1 associated with reward: classical conditioning.

• Then: stimulus S1 and S2 shown together followed by reward:

Association between S2 and reward not learned

Slides reproduced from Jochen Triesch, UC San Diego, http://cogsci.ucsd.edu/~triesch
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Variations of Conditioning 2
• Inhibitory Conditioning (2 stimuli):

– Alternate 2 types of trials:

1. S1 followed by reward

2. S1+S2 followed by absence of reward

Result: S2 becomes predictor of absence of reward

• Overshadowing (2 stimuli):

– Repeatedly present S1+S2 followed by reward

Result: often, reward prediction shared unequally between stimuli

• Secondary Conditioning:

– S1 preceding reward (classical case). Then, S2 preceding S1

Result: S2 leads to prediction of reward

But: if S1 following S2 showed too often: extinction will occur

Slides reproduced from Jochen Triesch, UC San Diego, http://cogsci.ucsd.edu/~triesch
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Classical conditioning paradigms

s2 rs2 s1s1 rSecondary

s1 α r, s2 β rs1+s2 rOvershadow

s1 r, s2 -r s1+s2 <none>, s1 rInhibitory

s1 r, s2 <none>s1+s2 rs1 rBlocking

s α rs r, s <none>Partial

s <none>s <none>s rExtinction

s rs rPavlovian

ExpectationTrainPre-trainParadigm
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Rescorla-Wagner Theory (1972)
• Organisms only learn when events violate their expectations

• Expectations are built up when ‘significant’ events follow a stimulus 
complex

• These expectations are only modified when consequent events 
disagree with the composite expectation
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Rescorla-Wagner Rule

wuv = vr −=δwhereuw εδ=Δ

Predicted 
reward

Stimulus 
(0 or 1)

Learning rate Prediction error

Actual reward
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Rescorla-Wagner Rule

wuv = vr −=δwhereuw εδ=Δ

Predicted 
reward

Stimulus 
(0 or 1)

Learning rate Prediction error

Actual reward

uwv rr
⋅=

uvruw rr )( −==Δ εεδ

For multiple stimuli, take u as a vector:
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Rescorla-Wagner Rule

wuv = vr −=δwhereuw εδ=Δ

Predicted 
reward

No stimulus means no 
change in weight

No reward: reduce 
weight if there is an 
expectation of reward

When there is a reward, 
the prediction error will 
drive w to an equilibrium 
value < r >
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Rescorla-Wagner and classical learning paradigms

uvrw r)( −=Δ ε

Pavlovian:
u=1, r =1 (stimulus and 
reward present)

Extinction:
u=1, r =0 (stimulus present, 
no reward)

Partial:
u=1, r =random (stim
present, reward 
variable)

wuv =

s α rs r, s <none>Partial
s <none>s <none>s rExtinction
s rs rPavlovian
ExpectationTrainPre-trainParadigm
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Rescorla-Wagner and classical learning paradigms (cont.)

uvrw r)( −=Δ ε uwv vv ⋅=

2211 uwuwv +=

1w

2w

stimulus u1
only stimulus u1

and u2

Blocking:
Reward present; 
stimuli change 
partway through

rw→v

s1 r, s2 <none>s1+s2 rs1 rBlocking

ExpectationTrainPre-trainParadigm
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Rescorla-Wagner and classical learning paradigms (cont.)

uvrw r)( −=Δ ε uwv vv ⋅=

ruw →11

Inhibition:

Reward present when stimulus 1 is present;

Reward absent when stimulus 1 + stimulus 2 presented together

02211 →+ uwuw

1122 uwuw −→

s1 r, s2 -r s1+s2 <none>, s1 rInhibitory

ExpectationTrainPre-trainParadigm
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Rescorla-Wagner and classical learning paradigms (cont.)

s1 α r, s2 β rs1+s2 rOvershadow

ExpectationTrainPre-trainParadigm

uvrw r)( −=Δ ε uwv vv ⋅=

Overshadow:

v=w1+w2 goes to r, but w1 and w2 may become different if there 
are different learning rates εi for them

ruwuw →+ 2211



3/7/2007 BME 665/565 18

Example: Responses in human DLPFC to surprise events

Fletcher et al., Nature Neuroscience 4, 1043 - 1048 (2001) 

Subjects learned associations between cues (fictitious drugs) and 
outcomes (fictitious syndromes)
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Asymmetry of Rescorla-Wagner rule

Fletcher et al., Nature Neuroscience 4, 1043 - 1048 (2001) 

uvruw rr )( −==Δ εεδ

Positive contingency: the presence of 'drug' is a strong predictor of 
'syndrome,' a surprise event is 'drug−no syndrome' 

For a learned negative contingency (‘no drug’ then ‘syndrome’), 
'drug−syndrome' is unexpected

According to the Rescorla−Wagner rule, these two types of 
unexpectedness should induce different weight adjustments

)(αβε f=

wuv =

Learning rate associated 
with the outcome

Learning rate associated 
with the stimulus
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Learned associations

Fletcher et al., Nature Neuroscience 4, 1043 - 1048 (2001) 

Subjects were sensitive to both positive and negative causal relationships, 
but were more sensitive to positive relationships
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Neuronal activity patterns reflect the same differences

Fletcher et al., Nature Neuroscience 4, 1043 - 1048 (2001) 

• Bilateral frontal regions show decreased 
activation with learning

• Right DLPFC is sensitive to unpredictability

• Learning effects are modulated by the 
configuration of the surprise event
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Application of Rescorla-Wagner Rule to fMRI data

Fletcher et al., Nature Neuroscience 4, 1043 - 1048 (2001) 

Learned response: (-ve contingency)

Syndrome follows No Drug

Surprise events:
Syndrome follows Drug

No syndrome follows No Drug

Learned response: (+ve contingency)

Syndrome follows Drug

Surprise events:
No Syndrome follows Drug

Syndrome follows No Drug

)(αβε f=
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Predicting future reward : Temporal Difference Learning

• Try to predict the total future reward expected from time t onward to 
the time T of end of trial

• Assume time is in discrete steps

• Predicted total future reward from time t (one stimulus case):

∑
−

=

+=
tT

trtR
0

)()(
τ

τ

∑
=

−=
t

tuwtv
0

)()()(
τ

ττ

Problem: how to adjust the weight? Would like to adjust w(τ)
to make v(t) approximate the true total future reward R(t)
(reward that is yet to come) but this is unknown since lying in future
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Predicting future reward
• If the time within a trial is taken to be discrete and all variables are 

functions of time, then v(t) can be taken as the expectation of reward 
later in the trial, and so for a trial of length T:

• For a single time-dependent stimulus:
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Predicting future reward
• Approximate

So:

∑∑
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Temporal difference learning rule)()1()()( tvtvtrt −++=δ

temporal
difference

)()()( tvtrt −+=∑
τ

τδ

temporal
difference error
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Temporal difference learning rule 
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Example: Understanding pain conditioning in humans
• Animals (including humans) use environmental stimulus to predict

future danger

• Seymour and colleagues used the temporal difference model to 
identify brain regions involved in the processing of aversive 
conditioning to sequential stimuli

• Using fMRI data gathered during pain conditioning, they identified 
those regions with strong negative or positive correlations with the 
temporal difference and the temporal difference errors predicted by 
their stimulus protocol

Seymour et al., Nature 429, 664-667 (2004) 
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Pain conditioning protocol
• Subjects were asked to judge if cue were on the left or the right

• Second cue completely predicted intensity of pain stimulus

• First clue probabilistically predicted the intensity – in a small 
percentage of trials, the second cue would reverse the prediction of 
the first trial

Seymour et al., Nature 429, 664-667 (2004) 
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Response predicted by Temporal Difference Rule

)(tδvΔ

)()1()()( tvtvtrt −++=δ
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ττ

)()()( τεδτ −=Δ tutw

Seymour et al., Nature 429, 664-667 (2004) 
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Regions showing significant correlation with the 
temporal difference error

Seymour et al., Nature 429, 664-667 (2004)

Prediction error was 
highly correlated with 
activity in both the 
right and the left 
ventral putamen, as 
well as caudate, 
cerebellum, right 
insula, left substantia
nigra
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Ventral Putamen showed biphasic response

Activity in ventral putamen
showed a biphasic response, 
similar to that predicted by the 
temporal difference error
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Comparison of Ventral Putamen activity between conditions

Positive prediction error: trial 3 –
trial 2

Expectation was the first cue 
would predict stimulus, but it 
does not
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Comparison of Ventral Putamen activity between conditions

Negative prediction error: trial 4 
– trial 1

Expectation was that first cue 
would not predict stimulus, but it 
does



3/7/2007 BME 665/565 34

Right anterior insula showed correlations with temporal difference
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How do the neurons know?
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“When an axon of cell A is near 
enough to excite a cell B and 
repeatedly or persistently takes 
part in firing it, some growth 
process or metabolic change 
takes place in one or both cells 
such that A’s efficiency, as one 
of the cells firing B, is 
increased.”
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Unsupervised learning
• Let u represent the pre-synaptic activity level, v the post-synaptic 

activity level

• Using a linear integrate-and-fire model:

• If the stimuli are presented slowly w.r.t. the neuron dynamics, then 
set v to the asymptotically steady-state value:

∑
=

+−=
uN

b
bbr uwv

dt
dv

1
τ

uwv vv ⋅=
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Unsupervised learning (cont.)
• Basic plasticity rule (based on Hebb’s conjecture):

• Averaged over all input patterns during training:

uv
dt
wd

w
v

v
=τ

uv
dt
wd

w
v

v
=τ

uuQwQ =⋅=
vvv

where

uwv vv ⋅=

Correlation-based plasticity rule
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• Problem: what constrains the weights?

• Take the dot product of w with both sides:

• And note that:                                 so 

Stability
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Stability (cont.)

• So, given that                                and

• We note that:

• So, the weight vector grows continuously, and therefore we have 
unbounded growth – we need to constrain it
– Many (not very biologically plausible) saturation constraints have been 

proposed
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