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Learning

« Classical conditioning
— Circuits involved in fear conditioning

— Role of dopamine in conditioning

« Cortical organization
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Phenomenology

UCS:
Unconditioned
stimulus: food

UCR:
Unconditioned
response:
salivation

CS: CR:
Conditioned Conditioned
stimulus: bell response:
Pavlovian experimental apparatus salivation
Unzontrolled cues are reduced by the wall between dog and experimenter.
S aliva drips through the tube inta the meazunng bottle on the expenmenter’s
zide of the wall.
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Phenomenology: Reinforcement Learning

Reward: food

Expectation:

. salivation
Stimulus: bell

Pavlovian experimental apparatus

Unzontrolled cues are reduced by the wall between dog and experimenter.

S aliva drips through the tube inta the meazunng bottle on the expenmenter’s
zide of the wall,
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Reinforcement learning

Rewarded Rewarded
movement non-movement

Apple juice S |
reinforcement E
on correct :
behavior
(=)}
-
£
Instruction 3
Reward B
Trigger
~Time

25-35 15  (sec)

Tremblay et. al., J Neurophysiol 80: 964-977, 1998;

Unrewarded
movement

Auditory
reinforcement
on correct
behavior



Reinforcement learning (cont.)

early reward
MW ﬂ"l‘“ﬁL .

late no reward
;4 hlhﬂ.ﬂh lﬂﬁalimmdni.i

stimulus —* reward J

Activity of DA neurons in VTA
Left: neuronal response to reward tied to stimulus
Right: neuronal response of trained neuron when reward is withheld
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Variations of Conditioning 1

Extinction:
« Stimulus (bell) repeatedly shown without reward (food):

conditioned response (salivating) reduced

Partial reinforcement:
« Stimulus only sometimes preceding reward:

conditioned response weaker than in classical case

Blocking (2 stimuli):
« First: stimulus S1 associated with reward: classical conditioning.
« Then: stimulus S1 and S2 shown together followed by reward:

Association between S2 and reward not learned

Slides reproduced from Jochen Triesch, UC San Diego, http://cogsci.ucsd.edu/~triesch



Variations of Conditioning 2

* Inhibitory Conditioning (2 stimuli):
— Alternate 2 types of trials:
1. S1 followed by reward
2. S1+S2 followed by absence of reward

Result: S2 becomes predictor of absence of reward

* Overshadowing (2 stimuli):
— Repeatedly present S1+S2 followed by reward

Result: often, reward prediction shared unequally between stimuli

« Secondary Conditioning:
— S1 preceding reward (classical case). Then, S2 preceding S1
Result: S2 leads to prediction of reward

But: if S1 following S2 showed too often: extinction will occur

Slides reproduced from Jochen Triesch, UC San Diego, http://cogsci.ucsd.edu/~triesch



Classical conditioning paradigms

Paradigm Pre-train | Train Expectation
Pavlovian S2>r S2>r

Extinction sS2>r s = <none> s = <none>
Partial S 2 r, s 2 <none> s>ar

Blocking Sy >r StS, 2> r S,=T, s, <none>
Inhibitory S,*+s, ><none>, s> r S;2>I,S,>-r
Overshadow S+S, 2T s,2>ar,s,>pr
Secondary S, >r S, 2 S, S,>r
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Rescorla-Wagner Theory (1972)

« Organisms only learn when events violate their expectations

« Expectations are built up when ‘significant’ events follow a stimulus
complex

« These expectations are only modified when consequent events
disagree with the composite expectation

3/7/2007 BME 665/565 10



Rescorla-Wagner Rule

V = WU AW = gou where O = —V

/ N

: Prediction error
Predicted Learning rate
reward Actual reward

Stimulus
(Oor1)
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V=WU
Predicted
reward
Stimulus

(Oor1)

3/7/2007

Rescorla-Wagner Rule

AW = gou where O = —V

/\/\

Learning rate Prediction error

Actual reward

—_ —

V=W-U
AW=¢golU=¢g(r-v)u

For multiple stimuli, take u as a vector:

BME 665/565
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V

/

Predicted
reward

3/7/2007

Rescorla-Wagner Rule

When there is a reward,

No stimulus means no the prediction error will
change in weight drive w to an equilibrium

value <r> ]

= WU AW = gou where O =r—V

/

No reward: reduce
weight if there is an
expectation of reward

BME 665/565
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Rescorla-Wagner and classical learning paradigms

Pavlovian:

u=1, r =1 (stimulus and

reward present)

1.071

Extinction:
u=1, r =0 (stimulus present,
no reward)

0.8¢
0.6}
w
o.4-§§ Partial:
008 u=1, r =random (stim
B N . present, reward
Aw=e(r-v)u 3 | variable)
V=WUu 0 100 200
trial number
Paradigm Pre-train | Train Expectation
Pavlovian S2>r S2>r
Extinction S2>r s 2 <none> s 2 <none>
Partial S =2 r,s > <none> s2>ar




Rescorla-Wagner and classical learning paradigms (cont.)

Paradigm Pre-train | Train Expectation
Blocking Sy >r S *+S, 2T S,=2T, s,=~><none>
Blocking: 107 L
Reward present;
stimuli change 0.8/
partway through
—s 0.6
w stimulus u,
0.4 only stimulus u,
vV=wu, +w,u
141 2472 and u,
W —(r) 023 W
D;—l—

AW=¢g(r—=v)u V=W-U  gueesss65

trial number

15




Rescorla-Wagner and classical learning paradigms (cont.)

Paradigm Pre-train | Train Expectation
Inhibitory S,+s, 2<none>, s, r S, 2>r,S,>
Inhibition:

Reward present when stimulus 1 is present;

Reward absent when stimulus 1 + stimulus 2 presented together

Aw=g¢g(r—v)i Vv=W-U

WU, — ()

w,u, + w,u, —0

wW,u, — —W,U,

BME 665/565
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Rescorla-Wagner and classical learning paradigms (cont.)

Paradigm Pre-train | Train Expectation
Overshadow S*ts, 2> r s, 2ar,s,>pr
Overshadow:

v=w,+w, goes to r, but w, and w, may become different if there
are different learning rates ¢, for them

WU, + WU, — (r)

Aw=¢g(r-v)i v=w-U BME 665/565 17



Example: Responses in human DLPFC to surprise events

L
Predictive
response

1.6 seconds

Subjects learned associations between cues (fictitious drugs) and
outcomes (fictitious syndromes)

Fletcher et al., Nature Neuroscience 4, 1043 - 1048 (2001)
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Asymmetry of Rescorla-Wagner rule
V=WU Aw=g&dl=¢g(r—-v)u

s =1 (ap)
"\

Learning rate associated Learning rate associated
with the outcome with the stimulus

Positive contingency: the presence of 'drug’ is a strong predictor of
'syndrome,' a surprise event is 'drug—no syndrome’

For a learned negative contingency (‘'no drug’ then ‘syndrome’),
'drug—syndrome’ is unexpected

According to the Rescorla—Wagner rule, these two types of
unexpectedness should induce different weight adjustments

Fletcher et al., Nature Neuroscience 4, 1043 - 1048 (2001)
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Learned associations

1
*Behavicral
AP ;/E{\H
05 — & Fositive
0 Evant Mumbar —a— Negatwe
T AR e Neutral
( 80 120
DR S ——— ]

1

AP = P(‘syndrome’ following ‘drug’) — P(‘syndrome’ following ‘no drug’)

Subjects were sensitive to both positive and negative causal relationships,
but were more sensitive to positive relationships

Fletcher et al., Nature Neuroscience 4, 1043 - 1048 (2001)
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Neuronal activity patterns reflect the same differences

 Bilateral frontal regions show decreased
activation with learning

* Right DLPFC is sensitive to unpredictability

» Learning effects are modulated by the
configuration of the surprise event

Fletcher et al., Nature Neuroscience 4, 1043 - 1048 (2001) 21



Application of Rescorla-Wagner Rule to fMRI data

Learned response: (-ve contingency)

Syndrome follows No Drug

Surprise events: —
Syndrome follows Drug — 61—t
No syndrome follows No Drug \i—;
o I r
Ll —\‘T
: DS o L D-15+
Learned response: (+ve contingency) e chadrprise event

Syndrome follows Drug

Surprise events:
No Syndrome follows Drug =1 (0!,3)

Syndrome follows No Drug

Fletcher et al., Nature Neuroscience 4, 1043 - 1048 (2001)
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Predicting future reward : Temporal Difference Learning

» Try to predict the total future reward expected from time t onward to
the time T of end of trial

« Assume time is in discrete steps

R(t) =<Ti I’('[+Z')>

7=0

» Predicted total future reward from time t (one stimulus case):

v(t) = Zi:w(r)u(t —7)

Problem: how to adjust the weight? Would like to adjust w(7)
to make v(t) approximate the true total future reward R(t)
(reward that is yet to come) but this is unknown since lying in future

3/7/2007 BME 665/565 23



Predicting future reward

« |f the time within a trial is taken to be discrete and all variables are
functions of time, then v(t) can be taken as the expectation of reward
later in the trial, and so for a trial of length T:

v(t) = <E r(t+ z')>

7=0

* For a single time-dependent stimulus:

v(t) = Zt:w(r)u(t —7)

AW(7) = &S(t)u(t —7) o(t) v(t)

3/7/2007 BME 665/565 24



Predicting future reward

« Approximate

—

St 1) = r(t)+Tfr(t+1+r)

T=

Il
o

T

v+ 0= S0}
7=0
So:

S(t)=) r(t+7)-v(t)

o(t)=r(t)+v(t+1)—v(t) Temporal difference learning rule

\W_} g - y

temporal t_emporal
difference error difference

3/7/2007 BME 665/565 25
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Temporal difference learning rule

B before

o—

f oo

O " N——

A
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N

-1t
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t
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after
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A
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t
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Example: Understanding pain conditioning in humans

* Animals (including humans) use environmental stimulus to predict
future danger

« Seymour and colleagues used the temporal difference model to
identify brain regions involved in the processing of aversive
conditioning to sequential stimuli

« Using fMRI data gathered during pain conditioning, they identified
those regions with strong negative or positive correlations with the
temporal difference and the temporal difference errors predicted by
their stimulus protocol

Seymour et al., Nature 429, 664-667 (2004) IE 665/565 27



Pain conditioning protocol

« Subjects were asked to judge if cue were on the left or the right
« Second cue completely predicted intensity of pain stimulus

« First clue probabilistically predicted the intensity — in a small
percentage of trials, the second cue would reverse the prediction of

the first trial
Trial type 1 . ey High
O —@—@ " e
Trial type 2 : Low
“ I (419%) Cue C—p Cug D —ip aok
Trial type 3 2 ; High
(9%) Cue O —p Cue B —p nain
0 3.6 7.2
Time (s)
Triektypa4 Cue A —pCue Db —p L:'TH
(9 %) pain
|E 665/565 28

Seymour et al., Nature 429, 664-667 (2004)



Response predicted by Temporal Difference Rule

b Temporal difference value ¢ Temporal difference

AV prediction error 5 (t)

Trial type 1 High
(41%) Cue A —p Cue B —p ek 8

rrrrrrrr
----------------

Trial type 2 Low
LI bor <L ; —_—— -H_'i.l—
41%) Cue C—p Cue D—p Uik

Traltype3 . o o5 High ’_m_ f\

(9%) pain

Trial type 4 Low f \
{g %} Cue A —p Cus 0 — p&il‘l Mﬁ

- - - Before learning e Mid-leaming w— |ate learning

v(t) = Z w(z)u(t—7)
AW(7) = 85 (tHu(t—7)

S(t)=r(t) +v(t +1) - v(t)

Seymour et al., Nature 429, 664-667 (2004) IE 665/565 29



Regions showing significant correlation with the

temporal difference error

Seymour et al., Nature 429, 664-667 (2004)

Prediction error was
highly correlated with
activity in both the
right and the left
ventral putamen, as
well as caudate,
cerebellum, right
insula, left substantia
nigra

30



Ventral Putamen showed biphasic response

Trial type 2 Low
(419%) Cue C—p Cug D—p il

Trial typ& 4 g Cue D L::-f.'..l
(9 %) pain

Activity in ventral putamen
showed a biphasic response,

similar to that predicted by the

temporal difference error

3/7/2007
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Effect size

-0.6

0 2 4 6 8 1012 14 16 18
Time (s)
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Comparison of Ventral Putamen activity between conditions

0f--

0 2 4 6 8 10 12 14 16 18
Time (s)

Trial type 2 _ Low
(419%) Cue C—p Cue D—p nain
Trial type 3 oy High —‘_/\_
(9%) CueC—p Cue B —p nain
a
" . : 0.6¢
Positive prediction error: trial 3 —
trial 2 S
Q0.2
Expectation was the first cue i
would predict stimulus, but it E
does not w -0.2}
0.4}
0.6
c
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Comparison of Ventral Putamen activity between conditions

Trial type 1 . - High
(41%) Cue A — Cue B—p oain _A L el
Trial type 4 2 Low
9 %) Cue A —p Cue ) —p nain ./\_V7
. . . b
Negative prediction error: trial 4 Gk
— trial 1 At
. . Q@ 02t
Expectation was that first cue % H r
. . _ 2 . :
would not predict stimulus, but it 3 :
does w-02f . |
0.4} I
0.6

0 2 4 6 8 10 12 14 16 18
Time (s)

3/7/2007 BME 665/565 33



Right anterior insula showed correlations with temporal difference

a c

0.7 ¢
0.6 t
0.5t
0.4
0.3
0.2
LET'T

0
=0.1

Effect size

0 2 4 6 8 10 12 14 16 18
Time (s)

Trial type 1 High

(41%) Cue A —p Cue B—p el

Trial type 2 Low
(419%) Cue C—p Cug D—p N
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How do the neurons know?

A | B
EIO early reward
M ' - g .

no reward

~ late | |
gi §,1ﬂmahuﬂu.u m.hi.llihlﬂlhjjﬂl.llhi-‘.
-0.5 0 ts) O t(s) 0-8 -1 0  t(s) 1 2

stimulus J reward J
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“‘When an axon of cell A is near
enough to excite a cell B and
repeatedly or persistently takes
part in firing it, some growth
process or metabolic change
takes place in one or both cells
such that A’s efficiency, as one
of the cells firing B, is
increased.”

BME 665/565
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Unsupervised learning

« Let urepresent the pre-synaptic activity level, v the post-synaptic
activity level

« Using a linear integrate-and-fire model:

dv T
T, —==V+ > WU,
t =

 |f the stimuli are presented slowly w.r.t. the neuron dynamics, then
set v to the asymptotically steady-state value:

3/7/2007 BME 665/565
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Unsupervised learning (cont.)

« Basic plasticity rule (based on Hebb’s conjecture):

dw

T,——=VUu
dt

« Averaged over all input patterns during training:

=(§-VT/ where (j :<uu>

Correlation-based plasticity rule

3/7/2007 BME 665/565



Stability
* Problem: what constrains the weights?

dw

T,—— =VU
dt

« Take the dot product of w with both sides:

_dw
T, W-——=VW-0
dt
dw” __ _ dn dw 7, djf’
- Andnote that: —I| _ oz 2¥ 5o W W _ Zw
dt dt dt 2 dt

3/7/2007 BME 665/565



Stability (cont.)

_daw
« So, given that TWW°E=VW-U and
B 2
rWdW—TWd‘W‘ V=wW-U
“dt 2 dt B

12
- We note that: 7y, d‘W‘ _\?
2 dt

« So, the weight vector grows continuously, and therefore we have
unbounded growth — we need to constrain it

— Many (not very biologically plausible) saturation constraints have been
proposed

3/7/2007 BME 665/565 40



